Science education in America: Why K-12 students fall behind in science.

“How Does a Plant Make Their Food? Do They Use a Microwave?”

“How Does a Plant Make Their Food? Do They Use a Microwave?”

Getting schooled.
Nov. 24 2013 11:45 PM

“Tell Your Second-Grade Teacher I’m Sorry”

The failure of science education in the United States.

(Continued from Page 1)
ECHS students explore light and the electromagnetic spectrum using prisms.

Photo courtesy Marty Benson/Environmental Charter High School

We have a lot to be sorry for—and a lot to worry about. Start with climate change, for a particularly fearsome example. Most climate scientists agree that, unless global carbon emissions are curtailed, we are headed for irreversible climate change: an increase of 2 degrees Celsius by 2040 and 4 degrees by 2070. A rise of 2 degrees would likely mean natural, economic, and social disaster—droughts, famines, floods, storms. A rise of 4 degrees would be catastrophic for human life across the globe.

However, the average American is more skeptical of the seriousness of global warming than he was in 1997.

Forty percent of Americans believe that global warming is not caused by human activity.


Sixteen percent believe global warming is “not that much of a threat” or “not a threat at all.”

Certainly the above examples of scientific illiteracy have much to do with our political climate, in which a belief in science is often pitted against a belief in God or the free market. But it is also true that without a proper foundation in science, which ideally begins before kindergarten, individuals are vulnerable to misunderstanding, the same kind that kept Day and Sonny Lacks from seeking treatment for life-threatening medical conditions. They are also easy targets for misinformation and manipulation, the forces behind our country’s increasing climate change skepticism.

Recently, the science classroom has re-emerged as a stage for political drama. In his campaign for the 2012 Republican presidential nomination, Texas Gov. Rick Perry claimed that his state taught creationism and evolution side by side, because children were “smart enough to figure out which one is right.” (Aware that requiring the teaching of creationism was ruled unconstitutional by the Supreme Court, education officials in Texas scrambled to distance themselves from Perry’s claim.) In spring 2012, the Tennessee state legislature passed a bill designed to protect teachers who allow their students to question and criticize “controversial” topics like evolution and climate change.

If American citizens are to have any chance of speaking truth to power, they will need to have a better handle on the truth part. They will need to be better educated, and the science classroom will have to be political—not in the partisan sense, but in the sense of the Greek word politikos: of, for, or relating to citizens. The science classroom will need to prepare them for engagement in our democratic society, to make choices that affect their lives and their communities.

So what does an ideal science classroom look like? You might ask Sandra Laursen, co-director of ethnography and evaluation at the University of Colorado–Boulder, a research unit devoted to science, technology, engineering, and mathematics (STEM) education. Laursen, a chemist by training, has spent years working as an outreach scientist, providing teacher-training workshops and developing materials with and for K–12 educators. “At all ages, the curriculum is built on well-scaffolded, in-depth, age-appropriate investigations, some of which take place outside,” Laursen says. “There is opportunity, increasing with age, for students to branch off to pursue their own interests, but the curriculum and the teacher continually return the intellectual discussion to a few central scientific concepts and the intellectual and social processes of science.” Laursen’s ideal classroom is equipped with supplies and materials that are maintained and replenished by the school: durable equipment like microscopes and lab glass, but also inexpensive consumables like pH strips, vinegar, toothpicks, and cotton balls. The teacher in Laursen’s ideal classroom participates frequently in collaborative, in-depth professional development that is specific to her science curriculum but also places it in the context of science education that takes place in earlier and later grades. (And she is paid for her time.)

This happens commonly at good private schools, which provide their students with highly qualified (though not necessarily certified) teachers; hands-on, inquiry-based learning; and opportunities for educational travel to places like the Galápagos Islands, where they can volunteer to help eradicate invasive plant species, monitor juvenile Galápagos tortoises, and watch the sunset from the pristine beaches of Tortuga Bay. Children from wealthy families are advantaged as science learners almost from birth: They have better nutrition, better health care, parents who take them to parks and museums and who are able to lead them through questions about their environment. They are more comfortable investigating this world, less hesitant about their place within it.

There are public schools, too, that demonstrate quality science learning, though the pressure to perform on state tests often edges out what we know to be the best practices. Perhaps an even greater challenge for many public schools, especially in our poorest communities, is overcoming the deficits of students who don’t get a firm grounding in science at home. The Environmental Charter Middle School (ECMS) in Inglewood, Calif., in its second year when I visited, provides rigorous, environmentally themed college-preparatory instruction to its students, a majority of whom are from minority, low-income families. In ECMS’s central courtyard, I heard the constant hum of traffic from the 405 freeway and the low, intermittent roar of planes landing at Los Angeles International Airport. But I also saw abundant evidence of student work and thinking that is tied to experiential science learning: terra-cotta container gardens planted with radishes, tomatoes, and peppers; vermicompost bins made from plastic storage containers; rain barrels catching and filtering runoff from the roof. In the seventh-grade courtyard, students were constructing an aquaponic greenhouse, measuring and cutting the wood framing with the assistance of their teachers.

Getting the students to this level has been hard work. According to Kami Cotler, principal of ECMS, many of her students arrive with what she calls “bathtub deficits. They haven’t spent enough time interacting with the physics of their environment.” Cotler and her teachers despaired after the school’s first big project—building paleolithic shelters after a unit on ancient civilizations—revealed that the students had little understanding of scale or measurement. But after almost two years of hands-on, experiential education, they are starting to improve. “When [the students] were reviewing the aquaponic greenhouse plans, they realized that there was a problem of scale, and they worked to fix it,” said Cotler. “That was major.”

ECMS has modeled many of its environmental practices after those of its sister school, Environmental Charter High School, which was founded in 2000. In both schools, the students are engaged by the process of learning about science in an environmental context, and they understand how each modification to their campus fits together. The plants are watered with rain collected in barrels and fertilized with worm casings. At the middle school, they eat the peppers and radishes in their salads at lunch; at the high school, they sell plant seedlings at the weekend farmers market. High school art students paint murals of vulnerable ocean creatures around storm drains, a reminder that even city streets are part of a watershed. Students report becoming environmental advocates at home, encouraging their families to compost or use canvas grocery bags; they understand that there is a direct connection between the things they learn in their biology or chemistry class and the quality of life in their community.

Environmental Charter High School
An ECHS student at the school's solar-powered greenhouse.

Photo courtesy Marty Benson/Environmental Charter High School

All children deserve an education that allows them to make these kinds of connections, and every community deserves to have its citizens engaged in this way. But too often, when we think about the educational challenges facing poor children and the best way to address them, we focus on the things that are easiest to measure: how well a child reads by third grade, how accurately she solves math problems. In schools with the most at-risk students (and the highest level of testing pressure), science class becomes another opportunity to teach reading fluency or to practice computation. It is cut off from its vital content—why are we studying this?—and loses its opportunity to capture students’ attention, the way Lawrence Lacks’ attention was captured by understanding the impact of his mother’s cells.

“Whenever the nation becomes interested, for whatever reason, in alleviating the suffering of the poor, the method is always the same: training,” wrote Earl Shorris in 1997. Training, as he pointed out, focuses on the simplest, least cognitively demanding tasks, and prepares the trained for lives and careers that are less remunerative, less satisfying, and less politically influential than the lives and careers of the truly educated. Shorris, who died in 2012, wanted to see the minds of the poor challenged and enriched by the humanities, and he created a rigorous curriculum that exposed poor and uneducated adults to Plato, Aristotle, Kant, and Tolstoy. His primary goal? That students live a reflective, considered life—a life of agency.

Science—the way a cell functions, the vastness of the universe, the effect of development on water quality—can and should have the same impact. But when we replace real, connected science learning with worksheets and test booklets, we are robbing students of the chance to understand what is truly at stake in their lives.

Most recently, I worked at the Hawbridge School, an environmentally focused charter middle and high school in a rural, economically disadvantaged county in North Carolina. Hawbridge’s students, who are selected by lottery, come from five different counties to the school, which is housed in a converted textile mill on the banks of the Haw River. Some come for the small class size and individualized attention, others for the program of interdisciplinary study, still others for the promise of canoeing instruction (part of the physical education program) or the chance to grow their own food in school gardens. But not all of Hawbridge’s students arrive eager for an ecological or even science-rich education; they come because, like students in charter schools everywhere, they had bad experiences in their assigned public schools: Their needs were ignored, they were bullied, or they fell in with the wrong crowd. It is our responsibility, as teachers, to turn them on to the opportunities the school offers—camping, rock climbing, gardening, monitoring water quality in the Haw River, or listening to presentations by university professors.

Sometimes, like teachers everywhere, we let them down.