Blogging the Periodic Table

Antimatter and the Anti-Periodic Table
Each one has a story.
June 8 2011 7:14 AM

Blogging the Periodic Table


Illustration by Alex Eben Meyer.

Imagine that Superman's opposite-in-all-ways enemy, Bizarro, taught high-school chemistry. (Bizarro does enjoy inflicting punishment, after all ...) What sort of periodic table would hang on the wall in Bizarro's classroom? Probably the periodic table of antimatter—the anti–periodic table.

Antimatter is the mirror image of the regular old matter all around us. Instead of our negatively charged electrons, there are positively charged positrons. Similarly, our positively charged protons get inverted into negative antiprotons. There are also neutral antineutrons. And if any of these particles touch their antiparticles—if, say, an electron touches a positron—they annihilate each other in bursts of energy.


Scientists first predicted the existence of antimatter in 1928, and discovered it in 1932. The first simple antimatter nucleus (an antiproton stuck to an antineutron) was discovered a few decades later. In 1995, scientists at the CERN particle accelerator finally filled in the first spot on the anti-periodic table by creating a full-fledged antiatom—antihydrogen, with one positron circling a lone antiproton. (The antisymbol for antihydrogen is, or "h-bar.")

Because the production of antimatter takes incredible amounts of energy, and because of the short life expectancy of antimatter in our matter-rich neck of the universe, making antielements is tough work. But two recent discoveries have bolstered the hope that we can—someday—fill in more of the anti-periodic table.

In March, an international team working at Brookhaven National Laboratory announced the creation of the first nucleus of antihelium-4 (-4), the counterpart of element No. 2, helium. Scientists had created antihelium-3 before, but antihelium-4 combines more antimatter than scientists have ever seen in one place. It also supplies further proof that antimatter can bind together in stable clusters just as matter does, something scientists suspected but hadn't confirmed.

Equally important, scientists at CERN announced in late April that they'd developed a way to capture antihydrogen for the first time. Previous setups created antihydrogen at extremely high temperatures, and scientists could hold onto these antiatoms (in electric and magnetic "traps") for just fractions of a second before they flitted away. A new technique, which cools the antimatter down first, makes trapping them easier, and the CERN group held onto a cache of antihydrogen for more than 15 minutes. This technique should deepen our understanding of how to create antimatter, since scientists can now conduct detailed experiments on it for the first time. (Since antimatter opposes matter in every behavior, antihydrogen atoms should be repelled by earth's gravity and "fall up.")

When I first heard this news, I thought, Two antielements down, just 116 to go! Unfortunately, getting to the next antielement, antilithium, could take years. The production rate of antimatter drops 1,000 times for every antiproton or antineutron you have to add. So creating (which has three antiprotons, three antineutrons) would be approximately 1 million times harder than creating-4, probably beyond the reach of our current equipment.

But there might be another way to find antilithium. Scientists study antimatter partly to solve one of the deepest mysteries of the universe. The Big Bang should have created matter and antimatter in equal amounts—which means everything in existence should have annihilated itself eons ago. Yet there seems to be quite an abundance of matter around, and no one knows why. Perhaps the Big Bang didn't create equal amounts. Or, perhaps it shot massive clumps of matter and antimatter in different directions. In that case, there should be entire antimatter galaxies out there. Studying antihydrogen and antihelium should help scientists learn how to detect those antielements across deep space, in antistars. And if there's antihydrogen and antihelium out there, there's bound to be antilithium, anticarbon, antigold, and even, with some luck, anti-beings who do anti-chemistry based on their through-the-looking-glass periodic tables.



Crying Rape

False rape accusations exist, and they are a serious problem.

Scotland Learns That Breaking Up a Country Is Hard to Do

There’s a Way to Keep Ex-Cons Out of Prison That Pays for Itself. Why Don’t More States Use It?

The Music Industry Is Ignoring Some of the Best Black Women Singing R&B

How Will You Carry Around Your Huge New iPhone? Apple Pants!


Theo’s Joint and Vanessa’s Whiskey

No sitcom did the “Very Special Episode” as well as The Cosby Show.


The Other Huxtable Effect

Thirty years ago, The Cosby Show gave us one of TV’s great feminists.

Cliff Huxtable Explains the World: Five Lessons From TV’s Greatest Dad

Why Television Needs a New Cosby Show Right Now

  News & Politics
The World
Sept. 19 2014 11:36 AM Breaking Up Countries Is Still Hard to Do
Sept. 19 2014 12:09 PM How Accelerators Have Changed Startup Funding
The Vault
Sept. 19 2014 12:08 PM The CIA Used to Have a Commute-By-Canoe Club. One Member's Memories
  Double X
The XX Factor
Sept. 19 2014 11:33 AM Planned Parenthood Is About to Make It a Lot Easier to Get Birth Control
  Slate Plus
Slate Picks
Sept. 19 2014 12:00 PM What Happened at Slate This Week? The Slatest editor tells us to read well-informed skepticism, media criticism, and more.
Brow Beat
Sept. 19 2014 12:10 PM Watch the Trailer for Big Eyes, a Tim Burton Movie About People With Normal-Sized Eyes
Future Tense
Sept. 19 2014 11:40 AM Apple Invented the Perfect Way to Handle Your Giant New Phone
  Health & Science
Medical Examiner
Sept. 19 2014 12:13 PM The Most Terrifying Thing About Ebola  The disease threatens humanity by preying on humanity.
Sports Nut
Sept. 18 2014 11:42 AM Grandmaster Clash One of the most amazing feats in chess history just happened, and no one noticed.