Bad Astronomy
The entire universe in blog form

Sept. 24 2016 9:00 AM

Infinity Squared: An Astonishing Video Of the Night Sky

Ben Canales is an amazing astrophotographer, specializing in time-lapse animations of the night sky (see, for example, this, this, and this).

He recently got his hands on a Canon MH20f-SH: A ridiculously sensitive camera capable of a stunning four million ISO! Even at 400,000 ISO it’s able to capture light so faint that it can be used to take passably well-lit video even at night… including the very dark night skies of an Oregon Star Party taken during the 2016 Perseid meteor shower.

Advertisement

Canales followed a score of high school students who went to the star party to experience the sky for themselves, and what he produced out of that night is, simply put, magical. Watch to the very end, and please, listen to what those students are saying.

I’d be hard-pressed to pick what my favorite part of this video is, but this comes close:

… you feel so small, but at the same time you know that there’s so much out there. [struggling for words] It’s… it’s… it’s kinda like unexplainable unless you’re out here yourself, [and] people should come out here and see this for themselves, it’s absolutely incredible.

Oh, I couldn’t agree more. I can wax poetical about the profound beauty of the night sky for a long time, but it’s a pale shadow of what it is to go out there be out there.

I know that 2016 has not been the best year for so many of us, but if you need a bit of joy and awe and the sense that there truly are greater things —and if you are physically capable of it— I urge you to find a dark spot and contemplate the cosmos. You’ll be better for it.

Sept. 23 2016 9:00 AM

Shaking Hands with Pele

Our world is extraordinary.

Of all the planets, ours alone has a surface driven by tectonics*. Under the relatively thin crust lies a layer of incredibly hot rock under unimaginable pressures. The physics of this material is so bizarre and so extreme that solid rock can behave in some ways like a liquid, with hot material rising and cooler stuff sinking… though it only creeps along at something like two centimeters per year.

Advertisement

But move it does, driven by the heat of the Earth’s core below it, powered itself by four sources: radioactive decay, leftover heat from the planet’s formation billions of years ago, heavier material sinking down to the core, and the squeeze of gravity on all of this. As the hot material of the mantle slowly convects upward, it can punch through the thin solid crust of our planet, forming volcanoes.

I’ve visited many volcanoes in my years, including the monstrous Kilauea on the Big Island of Hawaii. Twice before I’ve stood near the rim of the crater Halema’u’ma’u, watching the plume of sulfur dioxide blowing up from a lava pool down deep in the throat of the vent. But I’ve never seen the lava itself… until just the other day.

lava
Lava erupts in 15-meter-high fountains in the crater of Halema'u'ma'u, a crater in the Kilauea volcano.

Phil Plait

That photo shows the view from the Jagger Museum, located roughly two kilometers from the vent (you can see a live web cam on the Hawaii Volcano Observatory page). I used binoculars to magnify the shot, and you can see the glowing lava clearly. Usually the surface of the lava lake is too far down the vent to see, but for the past few days pressure from below has driven it up to just below the rim. It’s a little hard to tell, but the yellow layer of rock is the rim, stained by sulfur fumes. The lava lake is about 15 meters below it, and the lava you can see in the shot was fountaining up as high as the rim itself.

I stood in awe watching this. That’s liquid rock, far denser than water, hundreds and thousands of tons of it launched into the air as gases from below drove it skyward. The forces below our feet are immense.

The volcano is littered with ancient lava flows, active steam vents (water from rain seeps down into the rock, gets heated by the magma below, and blasts back up as steam; standing in it feels like the Earth itself is exhaling on you), and in some cases dead pit craters, like Devil’s Throat:

Devil's Throat
Aptly named, I'd say.

Phil Plait

This probably started as a cavern, but the walls collapsed, widening it and creating sheer vertical cliffs. It’s about 50 meters across and the same deep. It’s not a perfect circle, but the curve to the wall is obvious, as is the layering. That’s not sedimentary layering like you’d see in the American southwest; no such thing has happened on the Big Island. In this case, the layering is from dozens, hundreds of volcanic eruptions, each sending lava coursing away from the volcano. Everywhere you go on Hawaii you can see this same sort of thing.

It’s a stark reminder that the entire island is a gigantic volcano. Five of them, actually (Kilauea, Mauna Loa, Mauna Kea, Kohala, and Hualālai). Lava flows crisscross each other, some dark —these are generally fresher, only decades old— and some brown or redder, oxidized as they age, getting quite literally rusty.

Hawaii is known for its lush climate and biology, of course. Some of the plant and animal life is natural, coming to the island by wind, water, or wings, and some brought by humans for good or ill. But when you see the vast fields of sharp aa or rolling pahoehoe lava, it’s even more incredible to think anything can get a toehold here. But, as some people like to say, life finds a way.

I’ve been in Hawaii over this past week with friends and family, and as we've traveled along together our tour guides regaled us with colorful stories of native Hawaiian legends, most of which are richly layered “just so” stories to explain the volcano, the life on it, and other aspects of the islands. I’ve really enjoyed hearing all these tales, which —though perhaps more metaphorical than the scientific explanations—are wonderful and poetic. Pele, the goddess of the volcano, features prominently in them, capricious and powerful. Seeing the lava fountain and the force of the lava for myself, I can understand why the stories describe her so.

I work from home most times, and it’s easy to get overly focused on the day to day work, buried in the things that must be done, and to forget what an astonishing and amazing and awe-inspiring place we live on.

It’s worth remembering that, though. You need not travel far to experience it; the entire planet has something to offer if you simply look at it the right way. I hope that in whatever way you can, you take the time to do it.

* If you want to call Pluto a planet, then a case can be made for at least some of its surface responding to such forces as well, though under somewhat different circumstances.

Sept. 22 2016 9:00 AM

An Exploding Volcano Slowed Global Warming. Briefly.

As our planet warms up, the sea level is rising. This seems obvious; ice is melting from Antarctica and Greenland at a rate of several hundred billion tons per year, dumping all that water into the ocean. Less obvious is the fact that as water warms, it expands. Warmer water takes up more volume than cooler water, so as the oceans absorb the majority of heating of the planet, they expand, and that actually is a bigger effect on sea level rise than ice melting.

But another effect is that as the Earth warms, the rate at which ice melts and the oceans expand will increase, too. That means that if you look in the past, you’d expect sea level to be rising at a certain rate, but if you look at it more recently, that rate will be larger. If it rose at, say, 2 millimeters/year some time ago, it may be rising at 3 millimeters/year now.

Advertisement

That’s important. If you’re looking at the effects of sea level rise on coastal development and population over the next century, the difference in rates means your prediction could be off by several centimeters if you’re not doing the math correctly. That’s a huge difference, like the difference between flooding only during a storm surge and constant flooding.

For decades, scientists used tidal gauges (usually near coastlines) to measure sea level. In 1992, the TOPEX/Poseidon satellite was launched, using sophisticated techniques to measure it far more accurately. Scientists expected the satellite to easily detect the sea level rise acceleration after just a few years of observation.

To everyone’s surprise, though, they didn’t. The rate at which the global sea level was rising was steadier than expected. Were the global warming predictions off?

New research has finally solved this mystery: The predictions were fine. The problem was Pinatubo, and bad timing.

In 1991, Mount Pinatubo in the Philippines erupted. More like exploded: It was the second largest volcanic event of the 20th century, blasting hundreds of millions of tons of ash, gas, and aerosols (particles suspended in air) into the atmosphere. This had the effect of cooling our planet a bit; the particles reflected incoming sunlight, reducing global warming.

It’s not a huge effect, but it was enough that it changed our climate. Cooler land meant less ice melting, and cooler oceans meant the thermal expansion was abated somewhat. That in turn meant sea levels actually went down, by as much as six or seven millimeters!

That sounds like good news, but it was temporary. Within a few years our warming planet took hold again, and sea levels began to rise once more as the waters heated up and ice melting returned to previous rates.

But it happened just before TOPEX/Poseidon launched. So when the satellite started taking measurements, it saw a faster than usual sea level rise as the Earth recovered from the volcanic event; the normal acceleration due to global warming plus the recovery of the sea levels after the eruption. Weirdly, that masked the effects of global warming a little bit, throwing off estimates.

Because the levels were going up faster than usual, it looks like the rate of sea level rise has dropped in the past decade. In the 10 years after TOPEX/Poseidon launched, it saw sea level rise at 3.5 millimeters/year ever year, but then, over the subsequent decade, the rate dropped to 2.7 millimeters/year every year.

In a sense this is good news. Well, not as bad news: Global warming is increasing sea levels by a lower rate than once thought.

But this is still pretty bad news, because we don’t want global warming to be causing sea level rise at all. But it is.

While volcanic eruptions are devastating locally, they do help with global warming a bit. But the effects don’t last long, and in the medium to long run are completely overrun by human activities which contribute to warming. The most cataclysmic eruptions only put a fraction of the junk into the air as humans do (to the tune of 40 billion tons per year of just carbon dioxide).

While we can’t trigger volcanoes to explode when we want, there are other ways to mitigate global warming. The overwhelming cause is burning fossil fuels, and we have within our reach the ability to dramatically decrease our use of such old technology. We can make the switch to renewable energy production like solar and wind, and do so in a way that actually helps our economy, despite the claims of doom from those who say it would hurt us (after all, as the price for solar energy continues to drop, shouldn’t we let the market decide?). We can actually save the world, and ourselves, and getting on to the road to a solution isn’t even really all that difficult.

As I have said many times, and will continue to say as long as I need to: The first step is to vote global warming deniers out of office. Only then will we be able to tackle this issue seriously and give it the attention it—and we—desperately deserve.

Sept. 21 2016 9:00 AM

Rosetta’s Final Resting Place Has Been Chosen

In August 2014, the space mission Rosetta rendezvoused with the four-kilometer-long comet 67P/Churyumov-Gerasimenko, and made history. It was the first spacecraft ever to orbit a comet, and the first to send a probe to the surface. It has returned thousands of images of the double-lobed comet to Earth, and given scientists enough data to spend a lifetime examining.

But it’s also time for the mission to come to an end.

Advertisement

Over the past few weeks the orbiter’s trajectory has been changed, bringing it down ever closer to the surface. On Sept. 29, when it’s just a few kilometers away, the orbiter will execute a “collision maneuver,” sending it down to the surface. On Sept. 30 it’ll make contact, and be switched off. The mission will be over.

It will take data all the way down, observing its strange partner for the past two years. And now the European Space Agency has released information about its final resting place: an area on the smaller lobe of the comet near the 130-meter-wide pit called Deir el-Medina, named after a city in Egypt that also has a wide pit nearby. On the comet, this is an active pit where ice sublimates (turns directly into a gas) when it’s heated by sunlight. Dust blows out along with water vapor, creating the fuzzy head and long tail of the comet when it nears the Sun.

rosetta_deir_elmedina
Deir el-Medina seen by Rosetta from a different angle, in September 2014, not long after first approaching the comet.

ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Rosetta should touch down pretty close to the pit. Hopefully it will see inside the pit, down into the layers eroded away by countless passes around the Sun. There are also blobby structures nearby that may be “cometesimals,” small snowballs from the early solar system that came together to form the comet. If they are, they’re among the oldest formations we’ve ever seen, close to 4.6 billion years old. Seeing them is like seeing a time capsule to when the planets were still forming.

Funny: An operations manager in the press release commented that the orbit of the probe is being affected by the comet’s gravity, changing the shape in ways difficult to predict. If the comet were a perfect sphere, its gravity would be easy to navigate. But the comet is shaped more like a squat, off-kilter bowling pin (oh, who am I kidding; it looks like a rubber duckie). Sometimes the small lobe is near the probe, sometimes the bigger one. That enough is sufficient to mess with Rosetta’s path, but the comet is also not homogeneous; it’s lumpy, and that means the strength of its gravity changes even more depending on the probe’s position.

So they’re being careful, edging the spacecraft ever-closer to the comet. I imagine the images we’ll be getting will be as amazing as anything we’ve seen so far—and so far they’ve been truly amazing—and only get better as the distance closes.

And on Sept. 30 … well, we’ll see. It’s been an amazing journey, but there’s still a little ways yet to go.

Sept. 20 2016 9:00 AM

March … I Mean April … I Mean May … I Mean June … I Mean July... I Mean August 2016 Is the Sixth … I Mean Seventh … I Mean Eighth … I Mean Ninth … I Mean 10th … I Mean 11th Temperature Record-Breaking Month in a Row

N.B. If this article sounds familiar, it should. This has been happening so frequently I just copied the post for March April May June July and updated it.

October. November. December. January. February. March. April. May. June. July. And now August.

Advertisement

For the sixth seventh eighth ninth 10th 11th month in a row, we’ve had a month that has broken the global high temperature record.

According to NASA’s Goddard Institute for Space Studies, March April May June July August 2016 was the hottest March April May June July August on record, going back 136 years. It was a staggering 1.28°C 1.11°C 0.93°C 0.79°C 0.84° 0.98° C above average across the planet.* The previous March April May June July August record, from 2010 2014 2015 2011 2014, was 0.92° 0.87° 0.86° 0.78° 0.74° 0.82° above average; the new record beats it by well over a tenth of a degree.

Welcome to the new normal, and our new world.

Note: NASA has created a short video describing its efforts to measure global warming, specifically pointing out that the first six months of 2016 have all been the hottest months on record of their kind:

As you can see from the map above, much of this incredible heat spike is located in the extreme northern latitudes. That is not good; it’s this region that’s most fragile to heating. Temperatures soaring to 7° or more above normal means more ice melting, a longer melting season, loss of thinner ice, loss of longer-term ice, and most alarmingly the dumping of billions of tons of fresh water into the saltier ocean which can and will disrupt the Earth’s ability to move that heat around.

What’s going on? El Niño might be the obvious culprit, but even earlier in the year when it was strong it was only contributing a small amount of overall warming to the globe, probably around 0.1° C or so. That’s not nearly enough to account for this. Also now, even though the Pacific waters have returned to more neutral conditions, we're still experiencing record heat.

Most likely there is a confluence of events going on to produce this huge spike in temperature—latent heat in the Pacific waters, wind patterns distributing it, and more.

JMA August temperatures
The Japanese Meteorological Agency measured similar temperatures as GISS (though it uses a different baseline for the average). Note the trend. See a "pause"? I don't.

Japanese Meteorological Society

And underlying it all, stoking the fire, is us. Humans. Climate scientists—experts who have devoted their lives to studying and understanding how this all works—agree to an extraordinary degree that humans are responsible for the heating of our planet.

That’s why we’re seeing so many records lately; El Niño might produce a spike, but that spike is sitting on top of an upward trend, the physical manifestation of human induced global warming, driven mostly by our dumping 40 billion tons of carbon dioxide into the air every year.

Until our politicians recognize that this is a threat, and a very serious one, things are unlikely to change much. And the way I see it, the only way to get our politicians to recognize that is to change the politicians we have in office.

That’s a new world we need, and one I sincerely hope we make happen.

*GISS uses the temperatures from 1951–1980 to calculate the average. The Japanese Meteorological Agency uses 1981–2010, which gives different anomaly numbers, but the trend remains the same. Realistically, the range GISS uses is better; by 1981 global warming was already causing average temperatures to rise.

Sept. 19 2016 9:00 AM

What Is the Largest Galaxy in the Universe?

You might think this question would be easy to answer. If it’s big, it should be pretty straightforward to find, right? Yeah, well, the Universe isn’t always that simple.

First, what’s a galaxy? Basically, it’s a collection of stars, gas, and dust (as well as invisible dark matter) bound together by its own gravity. Some are elliptical (giant puff balls), some have disks and spiral arms, some are irregular (shapeless), and some peculiar (they have a shape, but it’s … weird). If you need a refresher, this episode of Crash Course Astronomy explains them:

Advertisement

Most galaxies have billions of stars. Our home galaxy, the Milky Way, has hundreds of billions strewn across a disk about 100,000 light-years in diameter. Some galaxies are much dinkier, and have only millions of stars; those are hard to find, even when they’re nearby, because they’re so faint.

I like to think of galaxies as the basic building blocks of the Universe. They’re like towns and cities strewn across the cosmos. Back when we were first figuring out their true nature, they were sometimes called “island universes.” Poetic, and not a bad description.

Galaxies can grow pretty big, usually by eating other galaxies. They can collide and merge to form a bigger, more massive galaxy. In a few billion years we’ll crash into the Andromeda galaxy, forming one around twice the size we are now.

So, how big can they get? What’s the biggest galaxy?

It turns out that this isn’t easy to answer for two reasons. One is that it depends on what you mean by “size,” and the other is that, paradoxically, the biggest galaxies may be very faint.

Let’s tackle the second one first. There exists a class of galaxy called Giant Low Surface Brightness galaxies. As the name implies, they aren’t terribly bright, even though they can be quite large. They’re rare, so they tend to be far away, and that means they’re hard to spot. One, called Malin 1, was only discovered in 1986, and was recently found to be far, far larger than previously thought: It’s a spiral galaxy a colossal 700,000 light-years across. At least. That’s five times the size of the Milky Way.

UGC 1382
In this corner, contender for the all-time heavyweight championship in the Universe, is UGC 1382.

NASA/JPL/Caltech/SDSS/NRAO

Another, UGC 1382, has a disk of stars about the same size as Malin 1’s but has gas measured out to a distance of 720,000 light-years! Malin 1’s disk is about that same size, within measurement error. Malin 1 also has a gas envelope that is 720,000 light-years across.

These GLSB galaxies are way bigger than normal galaxies, but they’re faint. There could be more of them, even bigger ones, but they’re really hard to find. Malin 1 looks like a relatively normal spiral until you take really deep images of it.

So there could be larger galaxies out there, and we don’t even see them!

And then there’s another complication, and that’s what you call a galaxy.

Let me introduce you to IC 1101. If UGC 1382 and Malin 1 are huge, IC 1101 is a behemoth. Its diameter has been measured at a staggering, overwhelming 2 million light-years. If one end were placed at the Milky Way, it would stretch two-thirds of the way to Andromeda!

But wait a sec, because it may not really be that big.

IC 1101 sits in the center of a large cluster of galaxies a billion light-years away called Abell 2029. Because of this it’s enjoyed the largesse of the cluster’s larder; it’s collided with a lot of other galaxies. This has made it grow large, but it’s also been puffed up; the way galaxies interact makes them swell in size for a while before settling down again.

Worse, IC 1101’s gravity has torn smaller galaxies apart as they merge, and its surrounded by all this debris. It’s hard to separate that from the glow of the cluster itself (it’s full of gas that adds to the light) so IC 1101 may be far smaller than generally claimed. It may still be bigger than Malin 1 and UGC 1382 though. We just don’t know.

And apropos of all is the final problem: What do you call the edge of the galaxy?

UGC 1382 has a disk with stars in it, and that fades away with distance from the center. But as I mentioned, it’s surrounded by a huge halo of gas. Do you count that? If you want to compare apples to apples, you need to be able to see if another galaxy has such a halo and that observation may be hard or even impossible.

So where does this leave us? What’s the biggest galaxy?

I think it’s a safe bet that IC 1101 is as far as we know at the moment, but with an asterisk due to not really being sure where it stops and the cluster environment begins. If it gets disqualified, then Malin 1 may edge out UGC 1382, but they’re so close it’s hard to be sure.

And of course, bigger ones may exist.

I’ve been pretty clear in the past that I’m not comfortable putting things into tightly regimented bins. Nature doesn’t, so why should we? There’s no real border between a planet and a brown dwarf, and even the line between brown dwarf and star is fuzzy. Would you say something the size of a beach ball orbiting the Sun between Mars and Jupiter is an asteroid? What about a baseball? A pea? A grain of dust?

Whenever you push boundaries, things get fuzzy. The same is true here. There may not really be a biggest galaxy. Instead, there may be the biggest galaxies, a porous container encapsulating specimens in which we needn’t be too concerned with individuals as far as records go.

Instead, we should study them to see how they tick, what made them so big, and how that might affect their own history and the evolution of other galaxies and the environment around them. That is a far more interesting task than picking out one and hanging a blue ribbon on it.

Sept. 17 2016 9:00 AM

Retro Posters Promote an Ancient Battle: Humans vs. Disease

Regular readers know I’m no fan of infectious diseases. Well, no one is, I suppose, but there are those who court them, thinking our body’s natural defenses are enough to prevent infection.

Sometimes that’s true. But tragically, many times it’s not. That’s why we need vaccines.

Advertisement

We also need to study these diseases, figure out how they behave, how they’re structured, and what we can do to prevent them from getting out of hand. One group at the forefront of this is the Center for Infectious Disease Research, a nonprofit organization that focuses on diseases like malaria, tuberculosis, HIV, and more. They have a grant from the Bill and Melinda Gates Foundation, a group I have a great deal of respect for.

To increase visibility and public outreach, CIDR put out a series of very cool retro posters promoting their fight. I really like this style of art, and they’ve used it to great effect. The one at the top of this post is my favorite of the lot, with a superhero feel to it (and make no mistake, scientists researching these bugs are indeed heroes).

Here’s another one I really like:

HIV poster

CIDR

I have to think the artist has seen the 1979 movie Meteor; there’s a scene where the Soviets and the Americans launch missiles at the incoming asteroid and it looks a whole lot like this artwork.

On the CIDR website, scientific director John Aitchison explains why the center is making these posters:

Our aim is to highlight the creativity, imagination, and passion that infectious disease scientists bring to this battle each day—and the optimism we see right at the epicenter of the struggle.
[…]
It is an interesting time to work in the field of infectious diseases. Zika and Ebola captured the world’s attention and concern like nothing we’ve seen since the dawn of the AIDS pandemic.
With the eyes of the world on these diseases, mountains were moved. Research dollars flowed in, red tape was cut, and the resulting forward progress over the ensuing months and years—researching and understanding the viruses, developing a pipeline of potential cures—amounts to more than has occurred in the previous decades for these diseases.
What this plainly demonstrated to me was the importance of public attention. When our will is there, when we are focused, when we have the imagination to see that life can fundamentally improve, we achieve great results for our collective health and safety.

Well said. But then he also says this:

Improving our world’s health starts with science. Period.

Hot damn! Yes, I couldn’t agree more. This is not why we humans invented science, but it may be one of the most important results of it. When we understand our world better, when we see reality for what it is, we can make all our lives better.

Not-so-incidentally, the CIDR takes donations.

Sept. 17 2016 9:00 AM

Does Climate Change Affect Our Weather? Yes. Yes, It Does.

What’s the different between weather and climate?

There are lots of ways to answer this. Weather is what’s happening now while climate is what you expect long term. Weather is your mood; climate is your personality. Weather is a dog walking with its person while climate is the person walking with the dog. Over time, say in 30 year chunks, weather kinda merges into climate.

Advertisement

But however you describe it, one thing is clear: Climate drives weather.

You don’t expect hurricanes at the North Pole. The conditions aren’t right to generate them. You don’t expect long, sustained rainstorms in the Atacama Desert for the same reason. Weather is the local and ephemeral effects of climate.

So what happens as the globe warms, and climates shift? As more water can stay evaporated in warmer air, and precipitate down in places not used to it, or not used to it in such amounts? Hurricanes are driven by warm water, so as water warms, hurricanes change (they don’t get stronger necessarily, but the strongest ones get significantly stronger).

Have no doubt: Weather is changing as climate does. But why believe me? Here are some professionals who can make their case well:

That video was put together by Peter Sinclair for Yale Climate Connections, and he’s made many more terrific ones about climate change.

The recent floods in Louisiana, the extreme heat and drought, the records broken all over the world … it’s hard to pin any one of these events to climate change, but taken as a whole?

Weather is your mood, climate is your personality.

This video also points out something important: Climate change may be slow, but it’s not some nebulous threat in the future. It’s happening now.

And come November, we can do something about it.

Sept. 16 2016 9:00 AM

Blue Origin Will Test Its Capsule Abort System ... in Flight!

Come October, the private space company Blue Origin will put on quite a show.

The company has already flown its New Shepard rocket four times into space—above the arbitrary but common-sense 100 kilometer height above Earth’s surface—and landed it successfully on its tail. It also have tested the crew capsule on top, deploying it more than once, including the last time when one parachute of three was purposely not used, to see how the capsule would do with only two (it landed just fine).

Advertisement

But the fifth flight of the rocket will be very different. To get certified by NASA for crewed flight, Blue Origin has to show that the crew capsule can escape rapidly on its own if the rocket below suffers a catastrophe (even if it only goes with private customers, Blue Origin still needs to prove it can do this). On the old Saturn V Apollo missions, this was done using a rocket mounted on a tower above the capsule (the so-called tractor or puller method). That added a lot of weight, and if it wasn’t used (it never was), it was ejected and thrown away after launch. That’s a waste of fuel and a perfectly good rocket.

Blue Origin has engines mounted below the capsule, which can be used to push the capsule away from the rocket in case of emergency. They tested this system dramatically in 2012, but it hasn’t been tested in flight, which is critical. And that brings us to the fifth flight of New Shepard: On that flight, scheduled for October of this year, the capsule will use the abort rocket to propel itself away from the main rocket during the ascent, which is when a catastrophe is most likely to happen. Not only that, but the company plans on doing this when the rocket is undergoing the maximum pressure from atmospheric passage during the flight, when the rocket will be moving faster than the speed of sound.

I guess that if you’re going to test a system, test it hard.

Here’s an animation of what this might look like:

The capsule will roar away from the rocket rapidly, and then (hopefully) parachute back safely to Earth. The rocket itself will not be as stable without the capsule on top, and will get a helluva kick as the capsule roars off. It may very well break up under the stress. Even it it survives the initial trauma, it’ll likely fall the rest of the way to the desert floor and impact at high speed. It’ll still have quite a bit of fuel on board, so, as CEO Jeff Bezos notes in an email, “…its impact with the desert floor will be most impressive.”

Most impressive. But if it does survive and lands, Bezos says it’ll be placed into a museum, which is fitting. It’s the first rocket ever to go into space and then land again vertically, let alone do it again three more times. It’s quite an accomplishment.

I’m interested in the fact that Bezos made this announcement at all; it was only a couple of years ago that everything the company did was kept secret until after it was accomplished. It seems that the string of successes has made Bezos (deservedly) more confident about Blue Origin’s ability to get things done.

I also have to wonder if SpaceX getting so much publicity is behind this as well. Elon Musk’s company has been sending cargo to orbit for some time, and has made huge strides in being able to reuse a vehicle. The loss of a Falcon 9 on the pad during fueling in early September was a major setback, of course, and will no doubt delay the first launch of a previously flown booster, which was set for later this year. It’s not clear when that will happen now.

Still, Bezos suddenly announcing events beforehand is interesting. They’ll even hold a live webcast of the launch when it occurs. I’ll have more information when we get closer to the time of launch. Stay tuned.

Sept. 15 2016 9:00 AM

I Didn’t Even Know Mars Had a Southwest

Since 2012, the Curiosity rover has been tooling around the surface of Mars. It landed in Gale Crater, an ancient impact site nearly 100 kilometers across, and its destination has been the base of Mt. Sharp, the informal name of Aeolis Mons, the crater’s central mountain that towers 5.5 kilometers above the ground.

One of Curiosity’s science goals is to look for signs where conditions for life may have been good a billion or more years ago. This means finding things like clays and other minerals that form in water.

Advertisement

Or, say, like sandstone.

Curiosity is currently in a spot on lower Mount Sharp called the Murray formations, named after planetary scientist Bruce Murray. This area used to be a dune field an eon or two ago, but then filled with water and formed a lake. That water is long gone, but it profoundly affected the sand it soaked into. It deposited sediments in between the sand grains, cementing them together to form sandstone. When the water went away, winds began to erode the sandstone, and after enough time, carved the Murray Buttes.

Mars buttes
I see scenes like these not far from my home when I drive through Colorado, Wyoming, and New Mexico. But these are buttes tens of millions of kilometers from Earth.

NASA/JPL-Caltech/MSSS

Aren’t these beautiful? They look like they could’ve been photographed in Utah or New Mexico, but this is Mars! Curiosity took them on Sept. 8, just a few days ago.

The layering you see is from when this was still a dune field. The wind would blow the sand off the dunes, sorting and layering it. Some of the layers were on the dune slopes, and were tilted with respect to the other layers. Once mineralized it formed angled layers called “cross bedding,” and created incredible scenes like this:

Mars sandstone
Jagged layers formed as sand was deposited at angles.

NASA/JPL-Caltech/MSSS

Seriously. What a view! And different regions eroded at different rates, giving a profile of sharp, jagged edges against the butterscotch Martian sky.

Mars Sandstone
Erosion by the thin air over the eons create knife-like protrusions into the sky.

NASA/JPL-Caltech/MSSS

The reddish color is from iron oxide—rust—in the dust of Mars, and in fact is the same reason there’s so much red sandstone in the American southwest. Long ago there were the ancestral Rocky Mountains, before the present ones, which were rich in iron. They eroded over millions of years, and the rusty remains formed a sea bed. That inland sea went away, and now we have red sandstone everywhere (it’s a very common building material in Colorado).

All that happened here on Earth from about 300 million to 50 million years ago. It’s possible the sandstone you see in these images on Mars was already old by then.

I love this mission of looking for life on Mars. When I see pictures like these I am strongly reminded of how Earth-like Mars can be, and how clement it once was. When the Earth was still too hot after its formation to support life, Mars was cool enough to get a head start. We know life here started up relatively easily, so why not Mars? It was doomed, since the planet’s lack of a magnetic field allowed the Sun to strip away most of its atmosphere and its water.

But it’s possible Mars once had life, and we could find the remains of it, or some other indication it once existed. I hope we actually do find it, because the implications of that would be profound.

But I also love that we, as a species, have chosen to make this search at all. I think it says something important and special about us that we do.

READ MORE STORIES