Radar Shows Near-Earth Asteroid 1998 QE2 Has a Moon

Bad Astronomy
The entire universe in blog form
May 31 2013 8:00 AM

Asteroid 1998 QE2 Has a Moon!

Radar observations of asteroid 1998 QE2
Radar observations of asteroid 1998 QE2 show it has a moon orbiting it.

Photo by NASA/JPL-Caltech/GSSR

Say hello to my little rocky friend: Asteroid (285263) 1998 QE2 has a moon!

Phil Plait Phil Plait

Phil Plait writes Slate’s Bad Astronomy blog and is an astronomer, public speaker, science evangelizer, and author of Death From the Skies!  

The asteroid pair is currently on a relatively near pass of Earth, sailing by us at a closest approach of just under 6 million kilometers (3.6 million miles) later Friday. Asteroids that get this close are of particular interest to astronomers, because that means we can use radio telescopes to bounce radar off them, which can lead to a better determination of their size, shape, speed, and position.

Advertisement

Using the Goldstone telescope in California, astronomers were surprised to find that 1998 QE2 is actually a binary asteroid, a big rock being orbited by smaller one. Here’s the video of the two (the moon is the bright spot seen moving vertically over time):

Statistically, it’s not shocking that 1998 QE2 has a moon; about 16 percent of near-Earth asteroids bigger than 200 meters across have companions. The primary is about 2.7 kilometers (1.7 miles) across, as previously estimated, and the moon is about 600 meters (2,000 feet) across. More observations are planned over the next few days, including using the Arecibo radio telescope, which will provide higher-resolution data.

Mind you, the radar data is a bit weird. It’s not showing you an actual picture of the asteroid. The vertical axis is showing distance to the asteroid—if there’s a hill you’d see it poke up toward the top, and a crater would be a depression. The horizontal axis, though, is actually the velocity at which the asteroid is spinning. The faster the rock spins, the more smeared out it is left to right; one that doesn’t spin at all would look like a vertical line. I know, it’s weird, but it’s the way this kind of radar observation works.

Not only that, but we’re illuminating it with the radar pulses, so when you look at the picture or video, it’s like the radio telescope is off the top of the frame, shining down on the asteroid. Imagine holding an orange in one hand and a flashlight in the other; you’re illuminating one side, not the whole thing. Radar reflections are strongest from the point on the asteroid directly under the radar beam, so that becomes the bright edge in the image. The reflections tend to get weaker near the edge, so it fades toward the bottom, giving it that odd crescent shape.

The moon looks curiously bright in the radar imagery, but I’m not sure why; I haven’t heard any comments about this yet—that may simply be because it’s small, so we don’t see it fade as much toward its edges like we do in the bigger rock. Think of it like having all its light compressed into fewer pixels, so each pixel is brighter.

From these data we now know that the main asteroid spins about once every fours hours at the most—previously it was thought to have a 5.3-hour spin. That old estimate was based on its light curve—that is, brightness variations as it spins. Imagine a dark ball with a single white spot on it. As it spins, you’d see it get brighter every time the white spot comes into view, and that can be used to peg its rotation. It’s not always 100 percent accurate, though, as it wasn't in this case. There are several dark features on the asteroid that may be craters, but they might also be patches of material that absorb radar so they simply look darker. We should know better soon as more data come down.

The moon spins more slowly—you can see it’s not very smeared out in the radar data. It probably takes a day or so to rotate once, but the actual rate is still not well known.

The very presence of the moon is a good thing. By measuring how long it takes to go around the primary, the mass of the primary can be found using math known for centuries (the more massive the big asteroid, the faster the moon will go around it at a given distance). We also know the size of the primary, so that means we can find its density, and therefore what it’s made of (probably mostly rock). Those numbers should be coming in over the next few days.

And finally, using the radar we get the precise position and velocity of the asteroid over time, and that allows a much better determination of its orbit around the Sun. We know that 1998 QE2 is not a threat to Earth, but it’s still nice to show that more clearly.

Of all the data we’re getting on this asteroid pair, the radar is the most precious because of the treasure trove we get from it. Just by bathing it in radio light and watching for the reflection we get a better orbit for it, we see it’s a binary, and we can determine its mass and even composition… all from millions of kilometers away.

That’s pretty amazing. There’s nothing like going to an asteroid and seeing it up close—and there are plans to do that—but we can learn a lot from the safety of our home planet too. Not bad for a bunch of apes who only recently figured out how to get into space in the first place.

TODAY IN SLATE

The World

The Budget Disaster that Sabotaged the WHO’s Response to Ebola

Are the Attacks in Canada a Sign of ISIS on the Rise in the West?

PowerPoint Is the Worst, and Now It’s the Latest Way to Hack Into Your Computer

Is It Offensive When Kids Use Bad Words for Good Causes?

Fascinating Maps Based on Reddit, Craigslist, and OkCupid Data

Culturebox

The Real Secret of Serial

What reporter Sarah Koenig actually believes.

Culturebox

The Actual World

“Mount Thoreau” and the naming of things in the wilderness.

In Praise of 13th Grade: Why a Fifth Year of High School Is a Great Idea

Can Democratic Sen. Mary Landrieu Pull Off One More Louisiana Miracle?

  News & Politics
The World
Oct. 23 2014 1:51 PM Is This the ISIS Backlash We've Been Waiting For?
  Business
Business Insider
Oct. 23 2014 2:36 PM Take a Rare Peek Inside the Massive Data Centers That Power Google
  Life
Atlas Obscura
Oct. 23 2014 1:34 PM Leave Me Be Beneath a Tree: Trunyan Cemetery in Bali
  Double X
The XX Factor
Oct. 23 2014 11:33 AM Watch Little Princesses Curse for the Feminist Cause
  Slate Plus
Working
Oct. 23 2014 11:28 AM Slate’s Working Podcast: Episode 2 Transcript Read what David Plotz asked Dr. Meri Kolbrener about her workday.
  Arts
Brow Beat
Oct. 23 2014 3:23 PM This Is What Bette Midler Covering TLC’s “Waterfalls” Sounds Like
  Technology
Technology
Oct. 23 2014 11:45 AM The United States of Reddit  How social media is redrawing our borders. 
  Health & Science
Bad Astronomy
Oct. 23 2014 7:30 AM Our Solar System and Galaxy … Seen by an Astronaut
  Sports
Sports Nut
Oct. 20 2014 5:09 PM Keepaway, on Three. Ready—Break! On his record-breaking touchdown pass, Peyton Manning couldn’t even leave the celebration to chance.