The entire universe in blog form

July 31 2014 7:30 AM

A Weird Angle on a Weird Crater

The Lunar Reconnaissance Orbiter has been circling the Moon since 2009, and has taken approximately eleventy kajillion pictures of the lunar surface. They’re all pretty amazing, and it’s seen some incredible things. But of all of the images LRO has taken, I think my favorites are the ones where an object is seen at an oblique angle. The main camera is designed to look straight down, so that circular craters always look round, but sometime the angle is changed so that craters are seen more from the side.

When that happens, you get some pretty cool shots, like this one of an unnamed crater about 11.5 km (7 miles) across, located in the Moon’s southern hemisphere:

double ring crater on the Moon
Looks like your soufflé collapsed. Click to impactenate.

Photo by NASA/GSFC/Arizona State University


That picture was taken from an angle 57° away from vertical, so the crater is foreshortened. Still, it looks weird, doesn’t it? The crater rim looks normal enough, pitted with smaller impact craters and being slowly eroded by micrometeorites, the solar wind, and the day/night thermal cycle pulverizing rocks over the eons.

But the floor is odd. Instead of being flat, like some craters, or dropping down into a bowl shape, there’s that peculiar humped ridge running along the inside of it (it looks like part of the wall of the crater has slumped, too, causing those pile-ups around the slope). It almost looks like there’s another ring inside of that one, too. What causes this?

An image of the crater taken from LRO on a different pass, when it was looking straight down. The peculiar polygonal shape is likely due to collapsed material sliding down the crater wall. Click to embiggen.

Photo by NASA/GSFC/Arizona State University

Actually, the physics of creating double or multiple ringed craters isn’t well understood. However, it seems like a good bet that they’re due to an impact from a comet or asteroid into terrain that’s layered. Instead of a single layer of rock, there may be a layer underneath the surface made of some other material. If the layers have different structural strengths, they’ll each make a ring; the surface layer will make the outer rim, and the inner layer will make the inner ring.

On Mars, this is seen when rock overlays ice. The Moon doesn’t have a thick ice layer under the rock, though. Interestingly, this lunar crater sits in the Apollo Basin, a huge, flat area about 500 km (300 miles) across. Basins on the Moon are caused by enormous impacts from asteroids or comets themselves dozens of kilometers across (way bigger than the one that wiped out the dinosaurs). The impact can punch a hole through the Moon’s crust, and lava can partially fill the impact crater. That gives the impact site a flat interior, and you can see that’s true for Apollo… as well as it being double-ringed as well! That sometimes happens in very large impacts, and the physics of why that happens is even less well-understood than for smaller ones.

Apollo Basin
An elevation map of Apollo Basin taken using an altimeter on LRO (blue is low, red high), with the location of the unnamed crater marked. The inner ring of the basin is obvious.

Photo by NASA/Goddard

The unnamed crater sits about halfway between the Apollo Basin’s inner ring and outer rim. It’s possible that the surface there is layered, but interestingly other craters in the area don’t show that double ring structure. Maybe the layering under the unnamed crater is local. Maybe something else is at play here. It’s hard to say.

And one final point. The crater we’re looking at here is 11.5 km across, 10 times wider than the famous Barringer Meteor Crater in Arizona. The diameter of a crater increases roughly as the cube root of the energy of the explosion, so the rock that smacked into the Moon to make this crater did so with 1000 times the energy of whatever made Barringer… which was itself equivalent to roughly a 15 megaton bomb!

Whatever carved out this crater on the Moon, it did so with a single explosion far larger than every nuclear weapon on Earth combined. And yet, on the Moon there are so many craters that size (or far bigger) that no one has even bothered to give this one a name.

The history of the solar system is violent. And yet it has spawned incredible beauty.

Video Advertisement

July 30 2014 1:01 PM

James Inhofe Slammed on Global Warming

Sen. James Inhofe (R-Okla.) is more than just a global warming denier. He’s a conspiracy theorist (calling warming a “hoax”) and, shockingly, hugely funded by the oil industry. Reading things he’s said about global warming is like perusing a denier’s playbook of nonsense.

So this story comes as no surprise to me, even as it elicits a long sigh: Sen. Amy Klobuchar (D-Minn.) submitted a resolution simply acknowledging that global warming exists and poses a threat to the interests of the United States—which it does, on both counts.


Of course Inhofe blocked it.

Inhofe’s action was so egregious, so ridiculous, that Sen. Sheldon Whitehouse (D-R.I.) took to the floor and magnificently schooled him on reality. Watch:

It should be said that Whitehouse is a new hero of mine. Inhofe’s stance is stupidly dangerous: Global warming is real, the climate is changing faster than it has in thousands of years, and the fault lies in ourselves.

But denial is in the blood of too many of our representatives. It’s become a Republican mantra to say, “I’m not a scientist, but …” as if that excuses them to say any nonsensical thing they want. The proper response to a statement like that is what Charlie Crist, gubernatorial candidate for Florida, said: “I'm not a scientist either, but I can use my brain and I can talk to one.”

If only all politicians did that … and actually listened to them, instead of to the pipeline of dollars flowing to them to which they’re apparently beholden.

Tip o’ the thermometer to Amy Klobuchar and Michael Mann.

July 30 2014 7:30 AM

Geysers on Enceladus Run Deep and Are Powered by Saturn Itself

In the outer solar system, a moon of Saturn is erupting. Enceladus, a ball of ice 500 kilometers across, has more than 100 geysers erupting near its south pole, and they’re blasting nearly a thousand tons of water into the sky every hour. After six years of observations using the Cassini spacecraft, astronomers are finally starting to get a handle on what’s causing this massive outbreak. They’ve also found clues that liquid water is making it from deep inside the moon all the way to the surface.

A little background: The geysers were discovered when Cassini took backlit images of Enceladus; that is, when the Sun was behind the moon. The surface of the moon was dark, so longer exposures were taken. A faint fan of light was seen coming from the moon’s south pole, and it was quickly discovered that it was in fact due to gigantic plumes from water geysers reaching hundreds of kilometers high.


After they were discovered, Cassini’s orbit was altered so it would pass the little moon many times. At one point the spacecraft actually flew right through the plumes, and it was able to sample the constituents. It found they were mostly made of water ice, but there was also the presence of salt and organic compounds. Not life, of course, but an intriguing list of ingredients that contained some of the needed elements for biology.

The questions remained: What is causing these geysers? Where is the water coming from? And there’s more: Hot spots (well, warmer than the surrounding ice, but still well below the freezing point of water) were seen using thermal imaging, and they lined up with the geysers. Were they causing the geysers, or were the geysers heating up the ice around them?

Enceladus hot spots
Hot spots (orange and red) follow deep cracks in the surface of Enceladus and are associated with the geysers.

Photo by NASA/JPL/Space Science Institute

Two new papers have just been released that are the culmination of all those years of work: The geysers—101 in total—are powered by the mighty gravity of Saturn, they are the source of the heat (and not vice versa), and the water does appear to be coming from deep within the moon. Here’s how that all works.

The strength of gravity drops with distance. That means the side of Enceladus facing Saturn is tugged a bit harder than the far side. This results in a stretching force, called the tidal force. Moreover, Enceladus doesn’t orbit Saturn in a perfect circle. Sometimes it’s a bit closer, sometimes a bit farther. The orbit is also tilted a wee bit, so different parts of the moon experience different tides from Saturn.

This constantly changing stress has created deep cracks near the south pole of Enceladus. Called sulci, there are four of them, roughly parallel, stretching across the terrain. (They’ve been nicknamed “tiger stripes.”) The tides from Saturn’s gravity opens and closes these cracks as the moon orbits around the planet. The geysers are erupting from these cracks, as you can see in this nifty 3-D video created using Cassini data:

Cassini observations have shown definitively that the plumes wax and wane in strength at different parts of the orbit, so they are certainly caused by tides. However, oddly, there’s a 5.7 hour delay in the maximum brightness in the geyser plumes versus what you’d expect from where the moon is in its orbit. While tides are driving this phenomenon, the delay means there’s something else going on as well. It’s not clear what it is, which means there’s more yet to understand here.

Cassini has a high-resolution thermal camera on board, too. It found hot spots corresponding to the geyser locations all along the tiger stripes. It was proposed that these may have been due to friction; literally the edges of the cracks rubbing together as the moon flexed over its orbit. If true, that meant the hot spots may have been causing the geysers.

However, that turns out not to be the case. The sharp images of the hot spots show them to be very small, just a few tens of meters across, roughly the size of a tennis court. That’s too small to be explained by frictional heating. So what’s causing them?

Diagram of geysers
What lies beneath. Click to oldfaithfulenate.

Diagram by NASA/JPL/Space Science Institute

It turns out to be the geysers themselves! The diagram above shows what’s going on. Deep under the surface of Enceladus is a vast repository of water (possibly a global ocean, or it may just be local lakes under the pole). Tidal flexing keeps the water liquid, and at the times in the orbit when the cracks open, the water can travel up the cracks. Under pressure, it erupts at the surface, blasting out the plume. As it does, it cools, releasing its internal heat. That warms the surface, creating the hot spots.

This is actually pretty amazing. It means that the geysers are occurring near the surface, but begin their journey much farther down. It also means that water from deep underneath the surface is mixing with the ice on top, and temporarily creating liquid water at the surface—the only other place in the solar system where that’s known to happen.

As Cassini imaging team leader Carolyn Porco points out, there are about 1,000 geysers on Earth, which means that about 10 percent of all the known geysers in the solar system are on Enceladus. That’s a nifty factoid for your next cocktail party.

As I said, there’s still many unknowns here, and the data are still coming in. Unfortunately, time is running out for Cassini: The mission is scheduled to end in 2017. I’m of two minds about that; I know that funds are limited, and the mission began in earnest when Cassini entered orbit around Saturn in 2004. That’s a long time for a planetary mission to go!  On the other hand—and this is a much bigger hand—Cassini is doing phenomenal work. Much of what it’s discovered has been because it’s been in orbit so long. It’s had a long baseline to observe and has seen amazing events that a shorter mission would have missed entirely.

Extending Cassini’s life would be a great idea, obviously, if NASA had the funding. That’s a rant I’ve made many times before, but Cassini is grand evidence supporting it. The longer we stay at Saturn, the more we learn about this ridiculously fascinating world and its fleet of moons. And that’s exactly what we should be doing.

July 29 2014 9:15 AM

Noctilucent Clouds … Frooooom Spaaaaaace!

I recently wrote an article talking about noctilucent clouds—relatively rare high-altitude clouds usually seen just after sunset and before sunrise. They have a milky, silvery appearance, and are usually pretty hard to capture on photos.

It can be even harder from space, where lighting conditions are harsher and getting the right exposure balance is difficult. But astronaut Reid Wiseman got it just right recently, snagging a photo of the odd clouds from the International Space Station:

noctilucent clouds
An eerily glowing noctilucent cloud above the curved edge of the Earth, as seen from the space station. Click to embiggen.

Photo by NASA


Conditions to create noctilucent (literally, “night shining”) clouds are touchy, which is why they’re rare. But there have been a lot seen recently—check out this astonishing photo taken over an alpine lake in Germany—and that has many folks wondering what’s going on. There could very well be a link with them and global warming, which is intriguing but doesn’t have a lot of evidence to support it yet.

But if we keep seeing more of these clouds, we may yet get a better understanding of them, and whether or not they are a canary in a coal mine of global warming.

July 29 2014 7:30 AM

The Littlest Victims of Anti-Science Rhetoric

After all these years advocating for science, and hammering away at those who deny it, I’m surprised I can still be surprised at how bad anti-science can get.

Yet here we are. Babies across the U.S. are suffering from horrific injuries—including hemorrhages, brain damage, and even strokes (yes, strokes, in babies)—because of parents refusing a vitamin K shot. This vitamin is needed to coagulate blood, and without it internal bleeding can result.


Vitamin K deficiency is rare in adults, but it doesn’t cross the placental barrier except in limited amounts, so newborn babies are generally low in it. That’s why it’s been a routine injection for infants for more than 50 years—while vitamin K deficiency is not as big a risk as other problems, the shot is essentially 100 percent effective, and is quite safe.

Mind you, this is not a vaccine, which contains minuscule doses of killed or severely weakened microbes to prime the immune system. It’s a shot of a critical vitamin.

Nevertheless, as my friend Chris Mooney writes in Mother Jones, there is an overlap with the anti-vax and “natural health” community. As an example, as reported by the Centers for Disease Control and Prevention, in the Nashville, Tennessee, area, more than 3 percent of parents who gave birth in hospitals refused the injection overall, but in “natural birth” centers that rate shot up to 28 percent. My Slate colleague Amanda Marcotte points out that vitamin K levels in breast milk are very low as well, and that’s the preferred technique for baby feeding among those who are also hostile to vaccines. In those cases, getting the shot is even more critical.

But the anti-vax rhetoric has apparently crossed over into simple injections. Chris has examples in his Mother Jones article, and there’s this in an article in the St, Louis Post-Dispatch:

The CDC learned that parents refused the injection for several reasons, including an impression it was unnecessary if they had healthy pregnancies, and a desire to minimize exposure to “toxins.” A 1992 study associated vitamin K and childhood leukemia, but the findings have been debunked by subsequent research.
“We sort of came to the realization that parents were relying on a lot of sources out there that were providing misleading and inaccurate information,” said Dr. Lauren Marcewicz, a pediatrician with the CDC’s Division of Blood Disorders. 

By “sources,” they mean various anti-science websites and alt-med anti-vaxxers like Joe Mercola (who has decidedly odd things to say about the vitamin K shot, which you can read about at Science-Based Medicine). Despite the lack of evidence of harm, some parents are still buying into the nonsense, and it’s babies who are suffering the ghastly consequences.

These include infants with brain damage, children with severe developmental disabilities, and more, because of parents refusing a simple shot for their infants. The irony here is extreme: These are precisely the sorts of things the anti-vaxxers claim they are trying to prevent.

The Centers for Disease Control and Prevention has a great Web page about Vitamin K: what it is, why we need it, and why babies need it even more so. It will answer any questions you have about this necessary vitamin.

If you’re about to have a baby or have had one recently: Congratulations! It’s one of the most amazing things we can do as humans, and I will always remember watching and participating in my daughter’s birth. I would have done anything to make her ready for the world, and for me—for every parent—that includes getting the real facts about health.

July 28 2014 11:00 AM

Phobos’ Googly-Eyed Transit

Mars has two moons: Phobos and Deimos. Both are lumpy, rather irregular potatoes, and quite small. Deimos is only 15 kilometers along its long axis, and Phobos is about 27.

Phobos is weird for more reasons, too. It orbits the planet very low, only 6,000 km or so above the surface of Mars. It moves so quickly around the planet that it actually goes around faster than Mars rotates, so it rises in the west and sets in the east—twice each Martian day.


It just so happens that the rover Curiosity is in a location on Mars where things line up just right such that every so often Phobos passes directly in front of the Sun. I’ve written about these transits before, but I somehow missed this one from Aug. 20, 2013. Happily, Robert Krulwich on his NPR blog wrote about it, to my delight.*

The photo above shows two images of the transit, which I couldn’t resist because it looks a bit googly-eyed. Someone tell Anne Wheaton and Bonnie Burton!

But those are just two images; Curiosity took quite a few … and the folks at NASA’s JPL put them together into this amazing video showing the moon moving right across the face of the Sun:

I love this video because it shows the whole transit, because the transit isn’t partial (with the moon cutting a shallow chord across the Sun, say), and because it’s in real time! The frame rate was set so that what you see here is pretty much what Curiosity saw: a 37-second long event.

On Earth, the Moon and Sun are about the same apparent size in the sky, because in a cosmic coincidence the Sun is 400 times bigger than the Moon but also 400 times farther away. Phobos is smaller than the Moon, but much closer to Mars, so it appears about half the size of our Moon. But Mars is also farther from the Sun, so the Sun looks smaller there too, and Phobos does a decent job covering it up.

It’s really odd to see something like this, knowing that what you’re seeing isn’t an airplane or a cloud, but an actual rocky moon orbiting far overhead.

… and of course, that’s nothing compared with knowing that this sequence was taken by a machine sitting on the surface of another world.

*Correction, July 28, 2014: This post originally misspelled the name of NPR.

July 28 2014 7:30 AM

Poisoned Planet

Let me tell you about a catastrophe. I don't use that word lightly: This event was monumental, an apocalypse that was literally global in scale, and one of the most deadly disasters in Earth's history.

It began about 2.5 billion years ago (though opinions vary). The Earth was very different then. There were no leafy plants, no animals, no insects. Although there may have been some bacterial life on land, it was the oceans that teemed with it, and even there life was far simpler than it is today. Most of the bacteria thriving on Earth were anaerobic, literally metabolizing their food without oxygen.


But then an upstart appeared, and things changed. This new life came in the form of cyanobacteria, sometimes called blue-green algae.

Cyanobacteria are photosynthetic. They convert sunlight into energy and produce oxygen as a waste product. Back then, the Earth’s atmosphere didn’t have free oxygen in it as it does today. It was locked up in water molecules, or bonded to iron in minerals.

The cyanobacteria changed that. But not at first: For a while, as they produced free oxygen as their waste, iron would bond with it and the environment could keep up with the production.

At some point, though, as cyanobacteria flourished, the minerals and other sinks became saturated. They could no longer absorb the oxygen being produced. It built up in the water, in the air. To the other bacteria living in the ocean—anaerobic bacteria, remember—oxygen was toxic. The cyanobacteria were literally respiring poison.

A die-off began, a mass extinction killing countless species of bacteria. It was the Great Oxygenation Event. But there was worse to come.

Modern cyanobacteria, magnified 2400x. A distant ancestor of this plant changed the entire planet.

Photo by Josef Reischig via Wikipedia

Up until this time, the atmosphere was devoid of the reactive molecule. But as oxygen abundances increased, some of it combined with methane to create carbon dioxide. Methane is a far more efficient greenhouse gas than CO2, and this methane was keeping the planet warm. As levels dropped, the Earth cooled. This triggered a massive glaciation event, a global ice age that locked the planet in its grip.

Things got so bad the cyanobacteria themselves were threatened. Their own numbers dropped, along with nearly all other life on Earth. The mass extinction that followed was vast.

But there was an exception: Some organisms could use that oxygen in their own metabolic processes. Combining oxygen with other molecules can release energy, a lot of it, and that energy is useful. It allowed these microscopic plants to grow faster, breed faster, live faster.

The anaerobic species died off, falling to the oxygen-burning plants, which prospered in this new environment. Certainly, anaerobes didn't vanish from the Earth, but they were vanquished to low-oxygen environments such as the bottom of the ocean. They were no longer the dominant form of life on Earth.

It was perhaps the first of the mass extinctions life would face on our planet, and its impact resonates through the eons (and of course there is quite a lot of detail to this story). To this day, our atmosphere is rich in oxygen, with most multicellular life on Earth descended from the upstart oxygen breathers, and not the anaerobes.

It's an interesting tale, don't you think? The dominant form of life on Earth, spread to the far reaches of the globe, blissfully and blithely pumping out vast amounts of pollution, changing the environment on a planetary scale, sealing their fate. They wouldn't have been able to stop even if they knew what they were doing, even if they had been warned far, far in advance of the effects they were creating.

If this is a cautionary tale, if there is some moral you can take away from this, you are free to extract it for yourself. If you do, perhaps you can act on it. One can hope that in this climate, change is always possible.

July 27 2014 7:30 AM

The Glory of Guadalupe

You just never know what you’ll see when you take a picture of the Earth from space. German astronaut Alex Gerst must’ve been pretty surprised when he looked out the space station window and saw a 35-kilometer-long seahorse blowing a rainbow bubble!

Guadalupe island
Guadalupe Island seen frooooom spaaaaaace. Click to hippocampusenate.

Photo by NASA

That image was taken on June 21, 2014, and—not to burst your bubble—actually shows the island of Guadalupe, located about 240 kilometers off the coast of Baja California. It’s essentially two volcanoes that overlap in the north/south direction, and has ridges running along it that reach a maximum height of about 1,300 meters (0.8 miles).


In the photo (which is part of a series Gerst took), north is toward the upper right. The winds tend to blow from the west (upper left), and you can see the webbed pattern of (what I think are) stratocumulus undulatus clouds around the island. Guadalupe’s elevation splits the wind, which flows around the island, disrupting the stratus formation near it. That’s why there’s a clear spot around the island.

I suspect the clouds to the east (lower right) are flowing back toward the island due to eddies in the winds as they move around the island. You can also see a small vortex a little farther to the east, which can sometimes form in such situations. Sometimes long streamers of vortices appear downwind from such islands; these are called von Kármán vortices, and I’ve written about them many, many, many times. They’re extremely cool.

But what about that rainbow effect? What’s that?

That’s what’s called a glory. It’s an optical effect where light from the Sun gets refracted (bent) back toward the observer. To see one, you need to have the Sun directly behind you (so in a sense you’re looking down into your own shadow), and there has to be water droplets suspended in the air to bend the sunlight. As far as I can find, the exact physics going on is not terribly well understood (as opposed to what happens in actual rainbows, which is quite well known).

I see them every now and again when I fly in airplanes; I got video of one on a recent trip home from Texas:

The engine noise was loud, so I posted a transcript.

Since there’s a glory in the picture of Guadalupe Island taken by Gerst, we know the Sun must have been directly behind him as he looked down at the island. Another picture he took within minutes of the other shows the glory in a different spot. If you connect the two points, they go right over the north part of the island (the “seahorse head”). Anyone standing there and looking up would’ve been able to see the space station pass directly in front of the Sun! That would’ve made for a pretty dramatic picture itself. And what would that have looked like? Why, this:

ISS transiting the Sun
The space station transiting the Sun. The sunspot to the upper right is about the same size as the Earth ... but a lot farther away than ISS.

Photo by Thierry Legault, used by permission

That was taken by Thierry Legault in 2010, and shows the ISS in transit across the Sun.

I would love to see a pair of photos like these taken at the same time: A glory shining around some spot on the Earth, and at its center a photographer looking up to capture the station in front of the Sun. Of course, the presence of a glory means the sky would be cloudy for the photographer, but if the clouds were thin stratus, you’d see the Sun right through them. It’s possible.

Someone get on that, OK?

Tip o’ the lens cap to Peter Caltner for finding the photos in the NASA database, and of course to Alex Gerst for taking them.

July 26 2014 7:30 AM

How the Universe Works: Season 3

I'm very pleased to let you know that the Science Channel astronomy documentary series How the Universe Works is back on the air. The third season began a couple of weeks ago with the episode "The Sun," which focuses on the journey of a photon, a packet of light, as it makes its way out from the core through the 700,000 kilometer deep abyss of our nearest star. The second episode is "The End of the Universe," a topic near and dear to me.

Before I go on, I have to admit to being a wee bit biased about this show: I'm on it. They interview quite a few scientists in each episode, and they've been kind enough to include me now in every season of the show. I have to admit it's a lot of fun to spend a day getting barraged by questions from the producer, answering them in my own style. The overall narrative of the show is already outlined before the interviews, but we get to answer the questions the way we want. Our answers are then woven into the storyline.


I think it's a pretty good show, which is why I've agreed to come back again on it. It doesn’t overreach, sticking with a few simple themes and explaining them. The narrative storyline is fun, and the basic concepts are gone over well enough that anyone with an interest in science and a little bit of knowledge shouldn't have too much trouble understanding the show. The graphics are stunning, and whenever I watch an episode I'm amazed at what's possible to show viewers.

It's also a kick to see old friends interviewed as well. Alex Filippenko, Hakeem Oluseyi, Michelle Thaller, Sean Carroll ... these are good people I've known a long time, and I'm really happy they still get on the air. Their joy and sense of wonder shines through, and I think that's a crucial factor that makes a TV show successful. We talk about this stuff because we study this stuff, and we study this stuff because we love this stuff.

I think you will too. How the Universe Works airs weekly on the Science Channel, Wednesdays at 9 p.m. Eastern time. Check your local listings, of course. It gets repeated fairly often, so you shouldn't have any trouble catching it.

Phil Plait
Hey! I know that guy!

Photo by Discovery Network

And before you ask: When you see the segments I'm in, yes, that is my telescope in the background (a Celestron C8-SGT XLT), the same one I use to capture images of the Moon, Mars, and more. If you like the show, remember: The Universe is out there, and you can observe it too. Once you're done watching TV, step outside and look up. All those things we talk about are up there.

That's one of the many, many reasons I do, in fact, love this stuff.

July 25 2014 7:30 AM

Space Rocks for Two Science Promoters

I am very pleased to say that two of my friends have been honored with asteroids named after them! To give a hint on who they are, the asteroids are (274860) Emilylakdawalla and (249530) Eugeniescott.

Regular readers know both of these people. Emily is a science communicator, blogging for the Planetary Society—in fact, I’ll just redirect you to her thorough and typically excellent post on her asteroid.


Genie is more than a friend of mine: She’s one of my heroes. I don’t use that term lightly. She unflinchingly defends science against those who would try to tear it down, and she did so for many years as the executive director of the National Center for Science Education. She has done battle with young-Earth creationists and climate change deniers, and was one of the people who won the day in the Dover evolution trial. And while doing all this, she has been calm, genial (perhaps her name is apopros), and even downright friendly.

But don’t mistake that for weakness. She’s tough and has weathered withering attacks from promulgators of anti-science. Her asteroid orbits the Sun out past Mars, and has withstood a billion years of solar wind and impacts from other asteroids.

It seems fitting, doesn’t it?

asteroid eugeniescott
Eugeniescott orbits the Sun well past Mars. She can really hold her breath a long time.

Illustration by NASA/JPL

The idea to name an asteroid after Genie came from Bob Blaskiewicz, a skeptic and, like me, an admirer of Genie. He approached me a while ago asking if it were possible to name a space rock after her. Having friends in high places, I then called Amy Mainzer, principal investigator of NEOWISE, a space telescope that scans the skies looking for asteroids. Amy got right on it, and amazingly it only took a couple of months for the paperwork to go through. Amy’s the best.

So now Emily and Genie join the group of science advocates with asteroids named after them. I’m still tickled to be in that group myself and hope someday to observe my namesake through my own telescope.

It’s a peculiar and wonderful thing to know that hundreds of millions of kilometers away, cold and silent, a rock a kilometer across (in my case, or a few kilometers in the cases of Emilylakdawalla and Eugeniescott) glides through space. Will humans ever venture there some day, centuries hence? Will they wonder why the asteroid they’re visiting has the name it has?

It’s a nice thought. And with Emily and Genie, it’s a wonderful tribute to two people who try—and succeed—to make science available to everyone.

Congrats to them both.