The entire universe in blog form

Jan. 25 2015 7:45 AM

His First Halo

Swedish astrophotographer Göran Strand took that picture above. It shows a halo around the Sun, replete with parhelia, over Lake Storsjön. That’s his son in the photo.

Besides being extremely beautiful and poignant, it’s also just an astonishing shot. Strand used a 14mm wide-angle lens, which he needed because the full halo is 44° across, a quarter of the way around the horizon. A lens like that really compresses distance, so I’d guess his son was standing right in front of him.


Haloes likes this are relatively common. They’re due to flat hexagonal ice crystals in the air. As sunlight enters a crystal it gets bent, refracting as it enters and as it leaves the faces of the crystal. The light gets bent by a total of about 22°, so crystals that distance from the Sun along your line of sight bend the sunlight toward you. Crystals closer to the Sun bend the light away from you so it’s darker inside the halo. Depending on the exact orientation of the crystal, some of the light gets bent more than 22°, so ice outside that 22° bright ring also bend light toward you, though not as strongly, so the halo fades away outside the optimal 22° angle.

When I say “degrees”, I mean an angular distance on the sky, where 90° is the angle between the horizon and the zenith, straight overhead. Your outstretched fist is roughly 10° (I have big hands, so for me it’s more).

The light forms a circle because that shape defines a constant distance from a point; for a halo that point is the Sun (the center of the circle), and the ice crystals 22° away from it fall along the circle of that size.

As it happens, red and blue light get bent by different amounts as they enter and leave the ice crystals; red light is bent a wee bit less, so the inner edge of the halo is redder and the outer part bluer. You can see that in Strand’s photo.

Parhelia—also called sundogs—are also caused by the hexagonal crystals. As the crystals fall through the air they align flat, face down to the ground. When the line between the Sun and crystal is parallel to the horizon, a lot more light gets bent toward you, so you get really bright spots on the halo on opposite sides.

It looks like he has a sun pillar in there, too: a vertical shaft of light caused when the flat crystals are slightly tipped, reflecting light toward the observer. That can only happen with crystals seen directly above or below the Sun.

I’ve seen haloes and parhelia I-don’t-know-how-many times. Dozens certainly. Hundreds? Maybe. I look up a lot. If you haven’t ever seen this incredible and lovely display in the sky, then you know what to do.

And check out more of Strand’s photography. I’ve featured a lot of his work on this blog, and you’ll see why. 

Video Advertisement

Jan. 24 2015 7:30 AM

Watch the Moon Get Squashed From Orbit

Sometimes what you see depends on where you are. And when you look around from orbit, things can look really, really strange.

Don’t believe me? Then watch this Vine video posted by ISS astronaut Terry Virts, an animation showing the Moon setting as seen from space:


See what I mean? The caption says,

#moonset during high-beta a while back. It gets squished, turns red, and disappears- pretty cool.

There’s a lot packed into those few words. First, when the Moon sets as seen from the space station, it’s more a reflection of the space station’s movement around the Earth than the Moon’s. For us on the ground, the Moon sets once per day, but from the station it sets 16 times per day! The Moon appears to move around the sky faster, and it moves through its own diameter in just under eight seconds. From the ground that takes closer to two minutes. The video is sped up, but not as much as you might think.

Why does it get squished? That’s an atmospheric effect. The air acts like a lens, bending the light from the Moon; as the Moon sets the bottom is seen through thicker air, which bends the light more. In effect, the bottom of the Moon looks like it sets slower than the top, so the Moon gets squished.

The redness is due to another atmospheric effect: scattering. Light from the Moon comes in from space and encounters our air. Photons, particles of light, hit the molecules of nitrogen and oxygen and scatter, a bit like two pool balls hitting each other. Blue light is way more sensitive to this than red. When the Moon is on the horizon, we’re looking through a lot more air, so there’s a lot more scattering. The blue light gets sent off in random directions, away from our eyes, while the red light gets through, making the Moon look red. It’s more complicated than this (haze, pollution, smoke and other factors can amplify the effect) but that’s the gist of it.

You can see this photos, too: Appropriately enough, here’s one Virts posted right after the moonset video:

Moon set
Moon set into a rainbow atmosphere.

Photo by NASA

Finally, what’s all this about the “high-beta a”? In this case, for Twitter, Virts was being brief: He means the beta angle, which has to do with the orientation of the space station as it orbits the Earth. Here’s a diagram via NASA:

ISS angles
In this part of the year, the ISS sees sunlight almost if not all the time.

Photo by NASA

The angle between the space station’s orbital tilt and the direction to the Sun is the beta angle. In this drawing, the tilt is such that the station is nearly face-on to the Sun. That’s a high angle. If it were more edge-on to the Sun (as it would be three months later, when the Earth has moved around its orbit ¼ of the way) then it would be low beta angle.

This affects the orientation of the Moon. This gets complicated pretty quickly, but in general, if his video were taken during low beta angle, the Moon would have looked more like it was facing into its own movement, in this case moving more right-to-left (or maybe left-to-right, depending on orbital angles). At high beta angle, the movement is closer to perpendicular to that.

Another way to look at it: See that line dividing night and day on the Moon? That’s called the terminator. Speaking very roughly, seen from Earth the Moon tends to move across the sky in a direction perpendicular to that line. But because the space station was at high beta angle, the Moon’s movement is nearly parallel with it.

I know, this can be headache inducing. I had to draw myself some diagrams to make sure I understood this myself. The details get pretty maddening, like the Moon’s orbital tilt with respect to the Sun, the season, the latitude of the observer, and more. That’s why I’m saying my descriptions are very general! To make them specific would take a lot of words. A lot.

Anyway, the point is, there are more things in heaven and Earth than are dreamt of in your philosophy… unless you understand the physics. And play the angles.

Jan. 23 2015 7:00 AM

Crash Course Astronomy Episode 2: Naked-Eye Observing

Astronomy is a funny science. There’s all the technical, physical stuff: orbits, planets, galaxies, stars, and all that. You can spend a lifetime—multiple lifetimes—learning that.

But there’s also going out and doing it. Looking up, observing the skies. And the easiest way to do that is without telescopes, binoculars, cameras, or any other equipment: Just stand (or sit or squat or lie down) under the stars and watch them.


And I mean really watch them. What do you see?

A lot, actually. There’s an amazing amount you can learn about the Universe just by paying attention to what’s going on over your head … and that’s what Episode 2 of Crash Course Astronomy is all about: naked-eye observing.

This week is a great time to go out; the Moon is new, Venus and Mercury still grace the western horizon after sunset, Jupiter is on the rise in the east, and lots of bright, pretty, colorful stars are yours for the viewing.

All you have to do is go outside and look up. Go!

P.S. Don’t forget to watch Episode 1, too.  

Jan. 22 2015 7:00 AM

GOP Senators Momentarily Pull Heads Out of Sand, Then Ram Them Back In

Ah, your government inaction. Yesterday, the Senate voted on whether reality was real. And they voted the wrong way.

The senators were debating the bill to give a go-ahead to the Keystone XL pipeline. As is usual with a bill of this size, there were several amendments attached to it. One, by Sen. Sheldon Whitehouse (D–Rhode Island), was quite simple. It stated:

To express the sense of the Senate that climate change is real and not a hoax.

That’s it. That’s the whole amendment. The Senate voted, and it went 98-1 in favor (the one nay vote: Sen. Roger Wicker (R-Mississippi)). So the Senate voted that climate change is real, and not a hoax.

This may surprise some folks, given the GOP’s majority, and how so many of them are climate change deniers. But it didn’t surprise me at all, because I’m familiar with how deniers weasel their way around an argument … and sure enough, I was proven right.

Sen. James Inhofe (R-Oklahoma) is the most vocal science denier in the Senate, literally having written the book on it. You’d expect him to vote nay on the amendment, right?

Ah, here’s where I knew what he was going to do. He voted yea. How? Because as the deniers like to say, “The climate’s always changing.” It’s a cheat, a cop-out. Yes, the climate is always changing, but we know that in the past few decades that change is due almost if not entirely to human activity. The amendment left out that last bit, giving deniers the wiggle room they needed.

And, as I expected, that’s exactly what happened. Inhofe, for example, was able to vote for the amendment because while the climate changes, he thinks that the idea of humans causing it is a hoax. He tweeted as much:

Knowing this, he even went so far as to co-sponsor the amendment!

This really shows just how out of touch Inhofe and his compatriots are with reality. Even his yea vote was nothing more than a craven political ploy. It was simply a dodge.

And his ridiculousness just got worse when he took to the floor to give his speech; he said it was arrogant to think humans can change the environment. Um, Mr. Inhofe, I refer you to the ozone hole, which was caused by humans, and then actually put on the mend by humans, too.

Anyway, things got weirder with another amendment, sponsored by Sen. Brian Schatz (D-Hawaii), saying that the climate is changing and that humans are “significantly responsible.” That amendment, as I expected, was shot down, though interestingly only by a 50 to 49 vote. It needed 60 votes to pass, so 50 votes for it were not enough.*

One particularly brain-twisting bit about this came from Sen. Lisa Murkowski (R-Alaska):

Republican Lisa Murkowski of Alaska urged her colleagues to vote down the amendment for one specific reason: the amendment says that human activity “significantly” contributes to climate change. That word was a matter of “degrees,” she said on the floor.

That’s really ironic, given that Murkowski’s understanding of global warming is pretty screwed up. She claims volcanoes spew out more emissions than cars. That’s exactly wrong, for two reasons: 1) Humans generate far more CO2 than volcanoes do annually, and b) volcanoes actually emit a lot of sulfur dioxide, which is an aerosol that acts to cool the climate. Despite aerosol emission, the planet’s getting hotter. Why? Humans.

Anyway, that amendment was Inhofe’s (and the other deniers’) out: They could vote that change is real (essentially with their fingers crossed behind their backs) knowing that they could also vote on the other amendment saying humans aren’t causing it.

I’ll note four GOP senators voted yea on this: Kelly Ayotte (New Hampshire), Lamar Alexander (Tennessee), Mark Kirk (Illinois), and (to my surprise) Lindsey Graham (South Carolina). I will have to keep my eye on them; I don’t know if this means headway is being made into the atmosphere of GOP climate change denial or not.

This vote was largely for show anyway, since the resolutions aren’t binding in any way. And President Obama has said he’ll veto the pipeline bill in any case.

So in the end, this vote only shows us what we already knew: Climate change deniers in the Senate are still willing to ignore the overwhelming evidence of science, and are more willing to score cheap political points than take any real action. The real question now is, will they be able to come up with the number of votes needed to override the president’s veto?

*Update, Jan. 22, 2015, at 19:30 UTC: This paragraph has been updated to clarify that the amendment needed 60 votes to pass. 

Jan. 21 2015 12:49 PM

Milky Way Moonset

Michael Shainblum is a photographer whose favorite target is the Milky Way (though he took one of the most amazing photos of 2014, lightning hitting the Burj Khalifa, the tallest building in the world).

He sent me a note recently that he caught an unusual scene in Big Sur, California, and, well, take a look:


How cool is that? The Milky Way is almost exactly vertical, plunging down into the Pfeiffer Beach Keyhole Rock, a natural arch carved by erosion. But what’s that glow in the hole? That’s the crescent Moon, setting into the horizon but blocked by the rock itself. The Moon’s path across the sky against the background stars passes fairly close to the center of our spiral galaxy, which we see edge-on because we’re inside it.

This shot is a mosaic of five panels, going from nearly to the zenith down to the rocks at the foot of the tripod supporting the camera. I suspect the subtle illumination of the arch is from the rocks, water, and beach that were lit by the Moon; their back-reflection would then light up the side of the arch facing the camera.

I’ve seen a lot of photos of the Milky Way on the sky, so sometimes you really need to pick your foreground—and the timing—just right to get a photo that really stands out.

You can see more of Shainbum's work on his Facebook page, too.

Jan. 21 2015 7:30 AM

Two New Planets in the Solar System? Not So Fast, Folks.

A team of astronomers made something of a news splash late last week when they announced they have indirect evidence that there could be one or more massive planets orbiting in the solar system well beyond Neptune.

I read their journal paper, and their argument is certainly interesting (I’ll explain it in a sec). But let me be clear here: Their evidence of any possible planets out past Neptune is indirect (they don’t have photos or anything like that), it’s based on a small number of objects, and we do have evidence that there aren’t really big (like gas giant–sized) planets past Neptune. And it pains me to even have to bring this up, but of course this has nothing to do with Nibiru crackpottery, either.


Bottom line: To me, this is an interesting and potentially promising line of research, but right now it is quite inconclusive about the existence of planet-sized bodies past Neptune.

How this works isn’t that hard to understand in principle. (Note: After writing this but before posting it, I found that the AstroBites blog also discusses this topic, with more technical info.) In our solar system we have the Sun at the center, and it pretty much runs everything. It has 98 percent of the mass of the solar system, so its gravity is in charge of how everything else moves. BUT, there are also planets that have gravity as well. Their gravity is weak compared with the Sun’s but is strong enough that, given time, the planets can affect the orbits of other objects.

Out past Neptune is a region occupied by objects that are similar to asteroids but made of ice instead of metal and rock (making them more like comets, really). There are various names for them, but in general they’re called trans-Neptunian objects, or TNOs. Some are on circular orbits, some more elliptical, some have orbits tipped to the plane of the solar system, some don’t.

A handful, about a dozen discovered so far, have really weird orbits. They are highly elongated, and tipped significantly to the plane of the solar system. The authors of the study call them Extreme TNOs.

Their orbits are difficult to explain from what we know about the solar system now. However, the authors note that there is a comet called 96/P Machholz 1 that also has an odd orbit. It goes around the Sun backward (retrograde) relative to the planets, and the shape and orientation of its orbit change over time. This is due to the influence of Jupiter; the comet’s orbit takes it out as far from the Sun as Jupiter’s orbit, so the huge planet pokes and prods the comet over time. This changes the comet’s orbit, making it undergo all sorts of peculiar behavior.

The authors then speculate that the weird TNOs may be explainable in a similar way. The TNOs fall into four groups according to distance, implying a series of planets at distances ranging from 40 to 150 billion kilometers from the Sun. (For comparison, Neptune is about 4.5 billion km out.) They don’t give specifics about the possible masses these planets would need, except to say they would need “at least several Earth masses” to affect the TNOs.

Again, the evidence they present is interesting, maybe even compelling, but it by no means is proof. They only look at the orbital characteristics of about a dozen extreme TNOs, and it’s hard to extrapolate safely from that. It seems clear something odd is going on, but the mechanism behind it isn’t clear. Planets? Maybe. But it could be something else.

I’ll note that a similar study was done with long period comets, which also found weird orbital characteristics that could be explained by a planet or planets past Neptune affecting their orbits. Unfortunately, this too relied on small number statistics and is interesting but not conclusive.

If these planets exist they can’t be too much bigger than Earth. Otherwise they’d have been seen by now; the NASA infrared survey observatory WISE has shown that no more Jupiter- or Saturn-sized planets can exist in our solar system, even way far out.

Personally, I’d love to have direct evidence of such planets. When I worked with Hubble, I spent some time trying to figure out ways of finding such planets! There’s no real theoretical reason they don’t exist, and we see evidence of planets orbiting other stars at great distances. So why not?

In the end, this research is perhaps motivation to keep looking. Even big planets would be terribly faint and difficult to detect at 150 billion km, so it may be quite a while before we have a confidently complete survey of the solar system. And even if they don’t exist, I’m glad people are still thinking about things like this. It’s best in science not to get too complacent with the “current understanding.” Nature is tricky and a lot more clever than we are.

Jan. 20 2015 12:50 PM

The Hairy Star, the Hunter, and the Seven Sisters

On Jan. 10, 2015, astrophotographer Jerry Lodriguss took what may be my favorite picture of the bright Comet Lovejoy I’ve seen so far. Check this out:

Jan. 20 2015 7:00 AM

Dawn Approaches Ceres

Ceres is the largest asteroid in the solar system—about 970 kilometers in diameter—but so far from Earth that it generally just looks like a blurry disk at best.

But that’s about to change. A lot. The Dawn spacecraft is slowly edging toward the asteroid, and on Jan. 13, 2015, it took a series (haha! I love homophones) of images that have been stitched together to make this nifty animation:


Dawn was about 383,000 km (238,000 miles) from Ceres when it took those shots, which is the same distance the Earth is from the Moon. Details are still difficult to make out but you can see a bright spot (I suspect the same one seen in earlier Hubble images) and some large craters. You can also see Ceres is noticeably flattened; it’s about 7 percent wider across the equator than through the poles (though to be fair I think that looks a bit exaggerated due to the location of the terminator, the day-night line).

These images are tantalizing—they rival but don’t quite surpass the best images of Ceres taken by Hubble—but in a little while we’ll be seeing much, much more detailed images of this world. It’ll eventually orbit only a few hundred kilometers over the surface, and the images returned will be quite high resolution indeed.

Dawn launched in 2007 after an interesting history (it was canceled by NASA, then reinstated), and reached the asteroid Vesta in 2011. It orbited Vesta for more than a year, mapping its surface in exquisite detail. It left Vesta in September 2012, and spent the next couple of years moving toward Ceres. It’s approaching now, and is expected to achieve orbit in early March.

Dawn uses an innovative engine called an ion drive. Any engine to move a spacecraft uses Newton’s third law of motion: Every action has an opposite and equal reaction. If you throw something really hard in one direction, it pushes on you equally hard in the opposite direction.

Rockets usually combine a huge amount of chemicals together, which get very hot, expand rapidly, and blow out the back of the rocket. This is a pretty violent effect, and it produces a lot of thrust.

Ion engines are different. They use either magnets or electric fields to accelerate and shoot individual atoms out the back of the engine. The atoms have a lot less mass than what’s used in chemical rockets, but they move a lot faster. The overall effect is a very low but extremely efficient thrust, and you can keep the engine blowing out atoms for years at a time, building up a huge speed. Dawn’s engines use an electric field to fling out xenon ions, and its fuel tank only carries about 425 kilograms (940 pounds) of fuel; in a day it only uses about 280 grams.

But that’s why it’s taken so long to go from Vesta to Ceres; it thrusts low but long. Now it’s approaching the giant asteroid, and soon it will go from a fuzzy disk to a fantastically detailed and amazing world. Stay tuned. This is going to be great.

Correction, Jan. 20, 2015, at 15:30 UTC: Arg! I originally misstated that series and Ceres are homonyms, but they are homophones. Homo=same, nym=name, phone=sound. So two words that are spelled the same way but mean different things are homonyms, but two words that sound the same but are spelled differently are homophones. I blue it their.

Correction, Jan. 20, 2015, at 16:30 UTC: I also originally misstated that these images were from the low-resolution camera, but the framing camera is the only optical-light camera on board Dawn. There is also a spectrometer that can do surface mineralogy, and a gamma ray and neutron detector that can determine elemental composition on and slightly below the asteroid surface.

Jan. 19 2015 12:36 PM

Talking Nerdy to Me

My friend Cara Santa Maria hosts the science podcast Talk Nerdy, where she talks to scientists and science communicators about, well, science. She invited me on, and the episode is online.

We talked about a wide range of stuff: meteorology, clouds, snow, why we love to do and talk about science, as well as (being who we are) the politicization of science and why that’s so dangerous right now. She brought up the recent issue of the QVC hosts trying to figure out what the Moon is and the appointment of anti-science senators to subcommittees that oversee critical science agencies.


It was fun to talk to her (and I apologize—she was in L.A. and I was at home in Colorado, and I don’t have good headphones; she had to edit it a bit to minimize a slight echo of her voice coming through my speakers. I really need to get a good set of headphones!) and let the conversation cover so much ground. I’ve been so busy lately writing and working on other projects that it’s been a while since I just sat and had a random-access conversation about science. I need to do this more!

Thanks for having me on, Cara. It’s always cool to get a little nerdery going.

Jan. 19 2015 7:00 AM

Was 2014 Hot Enough for You?

I’m not a huge fan of “hottest year” type statistics, as I’ll get to in a moment, but this one is important for two reasons: One is that there was no El Niño last year, which tends to drive global temperatures up. (Many record years were ones that had El Niños.) 2014 broke the record without any help. The other is that, according to the NOAA and JMA, 2014 was statistically significant.


Let’s say you flip a coin 10 times, and it comes up heads six times. Is that significant? No, it’s very likely just a random fluctuation, because if you flip a coin 10 times you expect pretty big deviations from a 50/50 distribution of heads and tails. If you flip it a million times and get 600,000 heads, then you’re talking significant.

2014 was like that. Sometimes a year isn’t a whole lot hotter than some previous year and may not be statistically significant. But 2014 was hottest by enough of a margin to make the claim.

Even then, I cast something of a skeptical eye when an individual record is broken. Maybe something else happened that was odd, unusual, pushing the temperatures that particular year to new heights. Maybe the next year, things will “regress to the mean,” head back down toward average.

So that’s when you bring in the most important issue here: context. History. Trends. 2014 may be the hottest year on record … but of the 10 warmest years on record, nine of them happened since 2000.

That’s the important issue here: Not that any one year is the hottest, but that they’re all clustered in the past few years.

JMA trend
Goin' up. The gray line is deviation from the average surface temperature (the average is taken from 1981–2010), blue is a five-year running mean, and red the linear trend over the whole period.

Graph by the Japan Meteorological Agency

It’s getting hotter. This brief animation shows it very, very well. No one record is that exceptional, but they happen more and more now than they did a century (or even a few decades) ago. Few records for hottest year happened in the early 1900s, but now every year has a decent shot at it.

So much for the “pause.” As we’ve seen over and over again. If you’re claiming that temperatures haven’t gone up in the past 16 years, you’re looking more silly every year.

Of course, deniers gonna deny, but, like cooler years, they’re increasingly becoming something of the past.