How a Paralyzed Man Learned to Move Again

Innovation, the Internet, gadgets, and more.
June 27 2014 12:36 PM

The Quadriplegic Who Moved His Hand

Could brain implants spell the end of permanent paralysis?

Ian Burkhart was 19 and fearless and horsing around in the surf with friends on vacation in North Carolina’s Outer Banks when he mistimed a dive and a wave drove him headfirst into a sandbar.

Will Oremus Will Oremus

Will Oremus is Slate's senior technology writer.

“I knew instantly when I hit,” he says. “You’re facedown in the water and you’re trying to get up and all of a sudden you realize that you can’t move.” His friends hauled him safely onto the beach, but Burkhart was paralyzed.

The former high school lacrosse goalie spent five weeks in a hospital on a ventilator recovering from the water he had inhaled and processing the news that he was now a quadriplegic. Growing up in suburban Columbus, Ohio, the third child of four, Burkhart had always been self-sufficient—the kid who insisted on doing his own laundry in middle school, who started a landscaping business in high school, and who was out at all hours the moment he got his driver’s license. Now his dreams of becoming a video editor looked as dead as his lacrosse career.

Advertisement

But from the start, Burkhart, now 23, had faith that 21st-century medicine could come to his aid. “One of the things that has helped me mentally ever since the accident is the fact that science and technology are growing and succeeding at such a rapid rate,” he says by phone from his family home in Ohio. “I always knew there was going to be something. I just didn’t know what or when.”

So when he was offered the chance to participate in a first-of-its-kind experiment at Ohio State University, he latched on to it, even though it meant brain surgery—and even though it came with no guarantee of improving his life.

The experiment was this: Working with researchers from Battelle, a Columbus nonprofit focused on scientific research and development, Ohio State surgeons would implant a small array of electrodes in Burkhart’s motor cortex. Then they’d wire his brain to a computer, which in turn would be wired to a specially designed sleeve on his arm. If all worked as planned, the contraption, called Neurobridge, would function as a sort of crude substitute for his spinal cord, harnessing and translating the signals from his brain to stimulate the muscles in his arm. In other words, Burkhart would be able to control his hand with his mind—which sounds outlandish until you realize it’s exactly what able-bodied people are doing all the time.

The difference is that the human spinal cord evolved in concert with the brain over eons to seamlessly transmit its impulses to our limbs. The technology to monitor and decode people’s neural activity—that is, to read their minds—is in its infancy. To make it work at all requires a grueling regimen of hospital visits and training sessions. To make it work well, at least at this point (or even to make it work at all outside of a hospital session), is out of the question.

The researchers at Battelle and Ohio State explained this to Burkhart. “It definitely was a big time commitment that I had to worry about,” he says. He’s pursuing a bachelor’s degree in business from Ohio State and Columbus State, and he coaches lacrosse at Dublin Jerome High School, his alma mater. “And then there’s the fact that you’re basically signing yourself up for elective brain surgery that you don’t need,” Burkhart adds.

He thought hard about the serious risks and limited rewards—and decided to do it anyway. “I really couldn’t pass up the opportunity to be part of something that might help other people in the future.”

140626_TECH_BrainHand
Doctors and researchers watch intently as Ian Burkhart becomes the first patient to move his paralyzed hand using groundbreaking technology called Neurobridge.

Photo courtesy Ohio State University Wexner Medical Center

Burkhart isn’t the first paralyzed person to get a chip implanted in his brain.  Pioneered on monkeys, brain-computer interfaces have been used in recent years to allow people with paralysis, Lou Gehrig’s disease, and even locked-in syndrome to control computer cursors or robotic appendages with their minds. A team at the University of Pittsburgh made headlines in December 2012 when it helped a quadriplegic woman named Jan Scheuermann feed herself chocolate with a robotic arm.

Those successes paved the path for Battelle to try something new with Burkhart: a system that would give patients control over their own limbs, rather than artificial ones. In the long run, it could prove less pricey and cumbersome, and it might have wider medical applications. In a three-hour operation on April 22, Ohio State neurosurgeon Ali Rezai opened Burkhart’s brain and implanted an electrode array a little smaller than a pea. Then the real work began.

To say that the software can read Burkhart’s mind is a little like saying that a first-year Latin student can read Catullus. Without a dictionary. And with most of the text missing.  

  Slate Plus
Culturebox
Dec. 18 2014 11:48 AM Behind the Year of Outrage  Here’s how Slate tracked down everything we were angry about in 2014.