Technology

The 800-Pound Car

How do you build a car that can go 100 miles on a gallon of gas?

Oliver Kuttner and the Edison2
Oliver Kuttner and the Edison2.

Photo by Ronald Ahrens

Excerpted from Ingenious: A True Story of Invention, Automotive Daring, and the Race to Revive America by Jason Fagone. Out now from Crown.

Oliver Kuttner digs into a pocket of his jeans and plucks out something metallic that he raises up to the light. He places it in my outstretched hand.

“Two-tenths of an ounce,” Oliver says.

The object is an inch-long piece of pale aluminum with a hexagonal shaft and a circular ring. A lug nut. A lug nut holds a wheel to a car. Car-wise, you can’t get more fundamental than a lug nut. It feels as light as a cough drop. “Cool, right?” Oliver says, beaming. He takes a step backward and studies my face for a reaction.

Oliver is an imposing figure, 6-foot-4 and 240 pounds, with large green eyes. In college he rowed on the crew team—the five seat in an eight-man boat, the brute shoveling coal into the furnace. His white-collared shirt says edison2 above the heart, and his slightly bulging stomach pulls the shirt taut where it’s tucked into his jeans.

We’re in a workshop. White walls, no windows. The building used to be a Dickies jeans factory, years ago, and this is a lightly renovated patch of the old factory floor—a large, high-ceilinged, squarish room. It smells a bit like a scorched metal cooking pot. Layers of noise: blasts of power tools, snippets of conversation, a radio playing quietly underneath. Over on the far wall, next to a trash can full of curlicue-shaped metal shavings, a man in safety goggles is bent over a metal lathe. Its whine overpowers the chatter of the nearby mechanics, who are dressed all in black. I can’t really figure out what’s going on; it’s like there are pieces of three or four different types of companies smushed into this one room. Depending on where I look, I see a hip architecture firm, a race shop, a used-car dealership, or a machine shop. Classic sports-car posters hang on the walls next to 3-D computer drawings the size of architectural blueprints, and not far from the guy at the metal lathe, two men type on laptops at desks. Hydraulic hoses snake up the walls like vines, and sparks from a welder sizzle onto the lacquered pine floor. It’s here that a team is trying to win the $10 million prize the X Prize Foundation has announced it will give to anyone who could build a safe, mass-producible car that could travel 100 miles on the energy equivalent of a gallon of gas.

Flickering in my peripheral vision are the Edison2 cars themselves, four of them, spread across the floor in various stages of assembly. Three are still just frames of steel tubing, lacking bodies. The fourth, clad in silver-colored fiberglass, looks like a real, drivable car. The car’s profile changes drastically according to the angle of view. From the top, it’s roughly a diamond. From the side, it’s a bird skull with a pointy beak. From the front, it’s Darth Vader’s pentagonal helmet. The wheels are housed inside pods that jut out from the body. The engines—small, extensively modified motorcycle engines that run on gasoline—are mounted in the back instead of the front.

Oliver turns to a nearby storage rack, where he picks up a length of aluminum pipe—another small, humble car part. He tosses the pipe in the air and catches it with a smack. “It’s just stupid,” he says.

“Stupid light?” I ask.

Oliver nods vigorously. “General Motors and BMW and Ford, they all have light-weighting programs,” he says. “In the process, they figure out how to take 3,600-pound Corvettes and make them into 3,400-pound Corvettes, which is a good thing.” The major automakers can make cars lighter around the edges. But each of the four cars now under construction in the Edison2 shop will weigh less than eight hundred pounds when finished. The lightest car on the market, the Smart Fortwo, weighs 1,800. Oliver has taken lightness to a new extreme. He says he finds this idea hard to get across to people just learning about the car, because the automakers have “poisoned the water” with their lax commitments to lightness.

“Imagine being in the ’20s, and an airplane company says, ‘We’re going to go to space,’ ” he says. “And other people say, ‘We’re already going to space, we fly up to 6,000 feet.’ You have to explain that what you’re really doing is actually going to the place where there’s no gravity.”

The thrust of what he’s saying is pretty intuitive. And also kind of refreshingly un-gadgety. Lightness! A cardinal virtue of human vehicles going back to the covered wagon, the chariot, the dogsled. Others interested in shaping the future of the car like to talk about electric vehicles, hybrids, charging infrastructures, upgrades to the electrical grid, and Google’s prototype robotic cars, which are so smart they can drive themselves. But Oliver seems to be after something more fundamental. Use any type of energy you want, he says—gasoline, electricity, hydrogen, compressed natural gas—but make the car light, very light, and you’re ahead of the game. Simple physics. The less mass, the less force you need to accelerate it. Isaac Newton’s Second Law of Motion.

At first, this is what I think Oliver is getting at with the lug nut: He has made a superlight car, therefore a superefficient car (even though it runs on gasoline, not electricity), and he has done it by making a bunch of custom superlight parts—not just the light lug nut but all these other parts on the racks of the shop. Light hubs and light bearings, light wheels, light shifter knobs, light seat rails.

But the story turns out to be more complex than that. Because if you took all these light parts and put them into a normal car, it wouldn’t work. The car wouldn’t be strong, wouldn’t be safe. Oliver’s car can be 800 pounds because it has a unique and somewhat alien architecture that allows it to be that light. The big idea, the major piece of new technology, is a custom suspension—the part of the car that controls vertical movement, absorbing bumps and giving you a comfortable ride on potholed roads. In a normal car, the front and rear suspension takes up a lot of space, the various components sprawling out horizontally and vertically. Oliver’s engineers have figured out how to confine the vital parts of the suspension to a smaller space. In their car, the mechanism that allows for vertical travel fits entirely inside the wheel, along with a damper and the brake.

This may sound like a minor change, but it’s not. The suspension is one of those things in a car that other things are built around, determining the course of the overall design, bounding its potential. It is to a car what a river is to a city. Edison2 yanks up the river, reroutes it, and builds a new city on its banks. In-wheel suspensions have been tried before, in limited ways, but no company has ever used the technology as the starting point for a new kind of car.

Putting the suspension in the wheels eliminates the need for a lot of the structure, the steel you’d normally need to enclose the suspension and to attach it rigidly to the rest of the car. And once you eliminate those structures, the other pieces of the car can be lighter. Imagine you’re a 300-pound person who goes on a diet and loses 100 pounds; you can suddenly get by with a lighter chair, a lighter bed, thinner floors. If it were biologically possible, you could redesign your ankles. The fact that one piece of the car is light means that the next piece can be light, and the next piece. And when Oliver and his team go to assemble the puzzle of the car, fastening lightness to lightness, they end up with something so elemental, so irreducible, that Oliver feels it’s explicable only by a sort of Zen koan: “The car is light because the car is light.”

He calls it the Very Light Car.

* * *

The first prototype of the Very Light Car, assembled in early 2008, turned out to be too light. It looked like a dune buggy. It had two seats, a bare, steel-tube frame with no body, and a one-cylinder Yamaha motorcycle engine. It weighed 367 pounds.

Oliver decided to try a little experiment. He climbed into the dune buggy and steered it onto a public road in Charlottesville, Va., where he lives, an hour northeast of the workshop. He hit the highway and opened the throttle, gunning it to 80, his crown of curly gray hair whipping in the breeze. Oliver used to drive professionally in sports-car endurance races, and over the years he has built several high-end racing prototypes. He would have driven the Very Light Car prototype faster but he was already on probation for having too many speeding tickets.

“We went to the absolute edge,” he says, “to the abyss of how light you can make it.” It was strictly an exercise: What was the minimum weight of a car that was viable for real roads? Now that Oliver had his answer, he decided to make the car heavier, because a 367-pound car is just as dangerous as a motorcycle. So Oliver more than doubled the weight, adding two seats and increasing the car’s safety, which is the main challenge in making a light car. How do you take out weight and still protect passengers in a crash?

In the main room of the workshop, Oliver grabs a printout from a table and moves nimbly through a pair of ten-foot-high double doors. In an outer hallway, the bare-metal frame of a Grand-Am race car is nestled against a wall next to a potted plant. The front of the car is crunched and mangled.

Oliver holds up the printout. It shows a line on a graph. At one coordinate, the line spikes sharply upward. He says it came from the Grand-Am car’s black-box recorder, recovered after a crash. During one split second of impact, the driver was subjected to a staggering 80 G’s—a sensation of gravity 80 times stronger than that found on Earth. Fighter pilots black out at a sustained 9 G’s. “The guy unbuckled and walked away,” Oliver says. “These race cars are not fragile cars. They are purpose-built machines of war.”

Oliver says that, in racing, cars have to be light so they can win, but they also have to be strong so drivers can survive high-speed crashes. Think about Indy car crashes you’ve seen on TV; the wheels shear off, and the cars, with their pointy front ends, bounce off walls and other cars at all angles. Traditional cars are boxes with flat surfaces designed to crumple in a crash. But the Very Light Car should skitter away from many kinds of collisions instead of engaging. “Those wheels are essentially side bumpers,” Oliver says. “The car is designed in an accident to behave like a judo fighter, a karate fighter. In most accidents, you will end up deflecting.”

Later that afternoon, seven elderly men arrive at the workshop—members of an alternative-vehicle club at a Lynchburg senior center. They’ve read about the Very Light Car in the local newspaper and want to see it in person. This kind of thing happens a lot. People walk in off the street.

Oliver greets the men warmly. He tells them they’re from “the best generation”—the last American generation to have invented great things. He says, “We feel we’ve discovered a whole new market segment of what a car could be.” He pulls out a lug nut. “Who wants to hear about the very light lug nut from the big nut himself?”

Then, after a few words about the virtues of lightness, Oliver plants himself next to the shiny nose cone of the silver car and glances, almost sleepily, off to the side—a bit of casual bravado. This prototype is completely functional. It seems to have all of a real car’s weight and heft: four wheels, seats, a steering column. Oliver stretches out his right hand. He makes a thumbs-up gesture. Ever so lightly, as the men watch spellbound, he touches the silver skin. He pushes the car across the floor with only his thumb.

Excerpted from Ingenious: A True Story of Invention, Automotive Daring, and the Race to Revive America by Jason Fagone. Out now from Crown.