My parents let me make gunpowder and nearly blow up the basement. Is that why I became a scientist?

What's to come?
June 8 2012 10:46 AM


My parents let me make gunpowder and nearly blow up the basement. Is that why I became a scientist?

Read more from Slate's special issue on science education and give us your best ideas for raising the next generation of scientists and engineers.

Paul Plotz and his sister Liz with his chemistry set, probably in 1948.
Paul Plotz and his sister Liz with his chemistry set, probably in 1948.

Courtesy the author.

I am a physician and scientist, 74 years old, and have been studying and working in those professions every day since entering medical school nearly 54 years ago. I would like to convey an accurate account of how that happened.

Shortly before my eighth birthday, the A-bombing of Japan and then the end of the war became our era’s sputnik in schools, though I was too young to notice. They also ignited a huge interest in Lise Meitner, Otto Hahn, Einstein, Fermi, Oppenheimer, and the squash courts beneath the stands at Soldier’s Field in Chicago.* My parents—father, a practicing physician who clung to Osler’s prescription to read an hour a day outside of medicine; and mother, a well-read woman with an astonishing knowledge of poetry—heartily approved of comic books since they made you read. They also brought into the house Mr. Tompkins Explores the Atom; One, Two, Three, Infinity; Mathematics for the Million; You and Heredity; Microbe Hunters; and Crucibles but didn’t force-feed them to us.


My father’s office was in the house. I passed through it every time I went out to play, and in the evenings, some or all of us would gather in his consulting room to do homework while my mother would help my father keep up his medical reading notes. He would be talking on the phone to his patients and to the doctors who had sent him patients or to the doctors to whom he sent patients. Without consciously listening to him, by the time I got to medical school, my part in such conversations seemed to come naturally.

Two other features of my home life stand out as more formative than anything I’ve mentioned so far. First, my father hired Miss Eichel, who had just graduated from Brooklyn College, as his lab technician, and he converted an unused room in the basement to a lab with a centrifuge and microscope and chemicals. Miss Eichel taught me the tasks of her trade and let me help her do them. And when she wasn’t there, I could do what I liked, such as taking note of the various chemicals, including concentrated sulfuric acid.

Second, a chemistry set came into my hands—probably a birthday present from my parents. Chemistry sets were common in those days. My wife Judith, also a doctor’s child, tells me that she had one, too. The chemicals all came in stout little wooden cylinders, and there was a booklet describing all sorts of experiments, which my friends and I rapidly ran through, I’m sure. Not just turning wine into water and water into wine but also some genuine chemistry. I was particularly drawn to the blue lumps of copper sulfate. They led to the first failure of my experimental career. I tried to copperplate a small bracelet of my mother’s using a solution of copper sulfate and a battery hooked up overnight. Maybe I got cation and anion confused—I still do—and hooked things up wrong. After the tears subsided, someone, possibly the young physician working as a junior partner in my father’s office, set it up so that it worked. The emotion surrounding the failure and the succeeding relief of the success still vibrate around within me from time to time.

But that was just the beginning. When we were in our early teens, a couple of my friends, Warren and Paul—both were doctor’s sons and became doctors themselves—and I discovered somehow the ingredients of gunpowder. We had charcoal and sulfur, but not potassium nitrate. One of us found out about a place that would sell chemicals to any warm body that walked in the door. Also magnesium tape for a fuse. We took the subway to a seedy place in downtown Manhattan and bought—no questions asked—what we needed. Back in the basement lab, we did all sorts of things involving gunpowder—sometimes just on the floor, sometimes in a small crucible from the lab, sometimes noisy, sometimes smelly, sometimes smoky, often in combination. Eventually we graduated ourselves into buying potassium permanganate and using the concentrated H2SO4 and other things we found in various ways, leading to outcomes we had not anticipated. We didn’t know anything about lab coats, gloves, or goggles (nor about bicycle helmets or seat belts) in those days. The moment I have never forgotten was igniting something or other in the crucible and causing a great smell and noise, and a whoosh of smoke shooting up to the ceiling, leaving a black smear, which was still there when I cleared the house after my mother died half a century later.

The point of this story is that through all of this, my parents and my friends’ parents, perhaps sensing that we were not psychopathic or silly, left us alone. They didn’t hover (as I did over my sons when they were playing with their chemistry sets, which may explain in part why they turned to words for a living) or ask where we were going, or what we had bought, or what we were doing anyway. In addition to being curious and to being skeptical, we were free and we were trusted. On reflection, that seems to have been central, and had to have been deeply formative. I became a scientist.

I majored in physics, but despite my love for it, it seemed natural for me to yield to years of my father’s gentle nudging, spend a summer being stuffed with organic chemistry, and become a physician. My school and college exposure to science was also helpful in reinforcing an already developed interest. In the small private elementary school and then in the huge public New York City high school I attended, great math and science teachers were in abundance, such as the justly famous biology teacher, Mr. Thomas Lawrence, a wonderful and inspiring spats-wearing Southern gentleman whose students were two of the 40 national Westinghouse finalists my senior year (not me) as well as fistfuls of honorable mentions. In college, great science teachers were also in abundance: for example, Leonard Nash, E.M. Purcell, and William Moffitt. But in high school and college, and even in medical school, the didactic laboratory experiments of the classroom always seemed artificial and boring.

When I got to medical school, a physician uncle suggested that I call his friend Bernie if I wanted to work in a lab. Bernie had just joined the microbiology department. I did, was thrown into Bernie’s lab the next day, and began (badly, I might add) to experiment. These were the first real experiments I had done since coming up from the basement at home in my early teens. All through medical school and during a year off supported by a Post-Sophomore Fellowship of the United States Public Health Service, I worked in Bernie’s lab at the school or at the Woods Hole Oceanographic Institute. Except for a pause of a couple of years during internship and residency, I continued doing research at the National Institutes of Health for the next 45 years, until I retired in 2011. That marvelous institution has its home base and its great research hospital, the Clinical Center, in Bethesda, Md., with outposts in other parts of the country, but almost 90 percent of its budget takes the form of grants and contracts to support biomedical and clinical research at universities and research institutes in the United States and abroad. Its mission is “to seek fundamental knowledge about the nature and behavior of living systems and the application of that knowledge to enhance health, lengthen life, and reduce the burdens of illness and disability.” The research supported by NIH, by the National Science Foundation, by the Veterans Administration, by the Department of Defense, and by a number of other parts of government is responsible for a great deal of the basic knowledge that underpins the development of new therapies. Furthermore, it supports the education of vast numbers of scientists from other parts of the world who come here to train and then return to their home countries or remain here in our scientific and medical communities.