Robots and Automated Cars Will Soon Require Our Cities To Become Machine-Readable

What's to come?
Oct. 11 2011 10:46 AM

The Future Is Machine-Readable

Robots and automated cars will require our cities to become machine-readable, and soon.

110718_FT_dustbotEX

A demonstration of the Dustbot in Sweden, 2009.

This article arises from Future Tense, a collaboration among Arizona State University, the New America Foundation, and Slate. Future Tense explores the ways emerging technologies affect society, policy, and culture. To read more, visit the Future Tense blog and the Future Tense homepage. You can also follow us on Twitter.

Advertisement

But the real model for tomorrow's city is a tiny medieval town in the Tuscan countryside called Peccioli. With a quarter of the town's residents above pensionable age, even the populace seems antiquated. Yet Peccioli is at the forefront of Europe's technological revolution. A collaboration with the Sant'Anna School of Advanced Studies of Pisa that began in 1995 made the town a testing ground for advanced research into aging, telepresence, alternative energy, environmental protection, and more. It was here that free-roaming robots first began working alongside the public.

After a demonstration in 2009, a pair of robots named DustCart took over municipal waste collection in the heart of Peccioli for two months in 2010. After residents called to request a pickup, the robot's supervisor (an artificial intelligence named AmI) would dispatch the nearest DustCart to the client, whose rubbish would be collected and carried to a sorting station. The locals called the robots Oscar (a reference to a man who'd provided similar on-call garbage collection before, not the garbage-happy Muppet).

It might seem disappointing that in the 21st century, our best consumer robots are ambling waste collectors like Roombas and DustCarts. Why has the rise of the robots not been as meteoric as expected? While machines can easily outperform humans when it comes to simple, repetitive tasks, they have great difficulty operating in novel environments. These limitations kept them chained to the monotonous predictability of the production line and, for the most part, out of public sight. When free-roaming machines finally arrived, they took first to the air—the arena in which they encountered the fewest obstacles.

If robots are to become an everyday presence, the usual thinking goes, they'll have to be able to function in a completely uncontrolled environment. However, I think the inverse is likely to be true: In the future, we will sculpt our environment to become more robot-centric to accommodate their needs.

Take, for instance, today's highways, which would be utterly baffling to a robot. Google's famed automated vehicle can only navigate itself after a human has programmed in "like road signs, traffic lights, and so on," says Google's Jay Nanncarrow. The Google car cannot operate in a novel environment, and it's not clear how the system would handle unexpected events such as temporary traffic lights or lane closures.

If automated cars are really on the horizon, then we will have to invest heavily in infrastructure to make the roads robot-friendly. This could mean radio beacons at pedestrian crossings, or road markings inlaid with inductive loops so that cars can sense where to stop at complicated junctions. We'd also need signs to warn drivers as they leave a road that is configured to support automated cars.

On the street, shops and businesses might supplement eye-catching signs with ones suited to electronic optics. In Korea, commuters can now shop at virtual supermarkets by scanning murals of groceries plastered across metro platforms. The advent of inexpensive robotic systems might even herald a return to the old system of grocery shopping, where customers presented a list of goods for the store assistant to fetch.

  Slate Plus
Slate Picks
Nov. 21 2014 1:38 PM What Happened at Slate This Week? See if you can keep pace with the copy desk, Slate’s most comprehensive reading team.