Sept. 11 anniversary: Can brain research keep us safe?

What's to come?
Sept. 8 2011 7:11 AM

Can Brain Research Keep Us Safe?

Post-9/11 "neurosecurity" research is very cool, but it holds more promise than results.

Brain scan. Click image to expand.
Research on neuroscience in respect to national security has surged since 9/11

Human conflict is often associated with the emergence of a new science or technology. The Civil War's Gatling gun changed battlefield tactics and led to modern machine guns, like the M61, that are still in use. World War I's chemical weapons proved difficult to manage in the field, provoked nearly universal revulsion, and became the object of international law and a remarkably successful arms control regime. World War II's atomic bomb was the punctuation mark at the end of the war in the Pacific.

A decade after 9/11 and the anthrax attacks, what will be the signature technology of the war on terrorism? It could well be connected to the brain. Anti-terrorism efforts have included a substantial investment in neuroscience research. The projects in progress have led to a great deal of soul-searching and wide-ranging ethical debates about the long-term. For example, President Bush's bioethics council expressed concern about the role of human enhancement technologies in the military, while the National Research Council published a report on emerging cognitive neuroscience and its implications for national security.

Missing in these discussions is the short term: What are the plausible prospects for neuroscience in the national security context, and what are the challenges? Whether these funds will lead to innovations that are of use in real-world conflict, or mainly some important laboratory science, remains to be seen.


The drawing board currently holds a lot of compelling and potentially threatening applied brain science. In 2009 the National Research Council identified a handful of novel threats to U.S. national security due to "technology surprise." Some of these threats, like cyberterrorism, have become familiar. Another, less familiar concern was neuroscience. The list of neurotechnologies that could create new security advantages as well as new problems is long and diverse: "super-soldiers" who can stay awake and alert for days at a time; brain imaging for detecting deception; implantable brain chips to improve memory and learning; brain-machine interfaces; substances that could aid in interrogation; and genetic information about adversaries that might inform defense planning.

In my 2006 book Mind Wars, I explored the idea that the study of the brain might become an issue for national security. Since then, defense and counterintelligence officials have become even more concerned about this possibility. It's reflected in the measurable growth of research on neuroscience and terrorism since 2001, a "9/11 effect." I reviewed the publication rate of science articles since the Sept. 11 attacks, focusing on keywords that included terror or national security in conjunction with words like brain research or mind reading. The results were striking: From 1991 to 2001 there were 25 articles in recognized science journals with these keywords; from 2001 to 2011 there were 147.

Based on public budget numbers, it appears that the Pentagon is now spending hundreds of millions of dollars on neuroscience-related projects. Among the participants is the Pentagon's science agency, the Defense Advanced Research Projects Agency. A visit to the DARPA Defense Science Office website yields information about at least four programs that relate to neuroscience: Accelerated Learning, Cognitive Technology Threat Warning Systems, Education Dominance, and Neurotechnology for Intelligence Analysts. Appropriately, DARPA is responding to a reality of the 21st-century war on terror: Even nonstate actors could take advantage of cutting-edge science.

  Slate Plus
Slate Picks
Dec. 19 2014 4:15 PM What Happened at Slate This Week? Staff writer Lily Hay Newman shares what stories intrigued her at the magazine this week.