The four barriers to the genetically modified–food revolution—and why no one is talking about them.

What to eat. What not to eat.
Aug. 8 2008 1:04 PM

Food Fight

The four barriers to the genetically modified–food revolution—and why no one is talking about them.

Genetically modified corn in Illinois. Click image to expand
Genetically modified corn in Illinois

Could this be the turning point for genetically modified food? As food prices have soared around the world, agro-industry companies like Monsanto and Syngenta, along with their allies in Washington, have been carefully positioning GM technology as our last, best hope against a global food catastrophe. Since traditional crop-breeding methods aren't keeping up with soaring food demand, they argue, we have no choice but to re-engineer our crops at the molecular level to give bigger yields.

Appealing as this argument sounds, it misses the real obstacles facing GM. Yes, traditional crop science is struggling. And yes, rising food prices might help consumers and lawmakers overcome their fears about GM's safety (especially as some of those concerns are overblown). But neither change will alter the fact that GM crop technology itself isn't ready to save the world. Despite GM's potential, the technology faces substantial technical and economic barriers before it will spark a second green revolution—barriers that aren't being discussed in the newly energized debate over genetically modified food.

Advertisement

For starters, for all the talk of saving the world from hunger, the GM industry isn't focusing on crops that are truly relevant to global food security. Today, most GM research targets big Western cash crops: Two of the best-selling GM products are corn and soybeans engineered to tolerate the popular herbicide Roundup. But these high-tech seeds are designed for large-scale, mechanized farmers in North and South America and are of no use to the billions of developing-world farmers who make up three-quarters of the global-farming work force—but without whom lasting global food security can't be achieved.

By contrast, relatively little GM investment is going into the crops that do matter to poor farmers—cassava, sorghum, millet, pigeon pea, chickpea, and groundnut. These crops are more nutritionally balanced than corn or soybeans and are far better suited to the local soils and often-tough climates of poor nations. Yet, because poor farmers can't afford high-tech seeds, GM companies have little incentive to invest research dollars to improve "marginal" crops. Instead, they focus on the money makers: According to the U.N.'s Food and Agriculture Organization, just four commercial crops—corn, soybeans, canola, and cotton—account for 85 percent of all GM crops planted worldwide.

GM companies also aren't being honest about what this technology can do—and what it can't. In the rush to exploit the current crisis, the industry routinely promises to re-engineer crops to give massive yields—Monsanto has vowed to double grain yields by 2030—or to grow with less water or to thrive in degraded soils. But delivering on such promises will be much harder than is currently acknowledged. Whereas making corn tolerate Roundup required the manipulation of just one gene, boosting yield is vastly more complex, says Kendall Lamkey, a crop-breeding expert who chairs Iowa State University's Department of Agronomy. Yield is the expression of a plant's reproductive success, and reproduction takes nearly all of a plant's survival "skills," from its capacity to cope with temperature changes to its resistance to bugs. In other words, says Lamkey, to boost yields through genetic modification, GM companies must manipulate thousands of genes—and so far, they've had limited success.

In fact, many breeding experts believe that the fastest way to boost yields isn't by engineering new seeds but by exploiting the untapped potential of existing seeds. As Lamkey points out, the yields for corn and soybeans on America's top-performing farms are more than double the national average for those same crops. (In 2007, the top soybean farmer produced 154 bushels per acre, compared with the national average of around 41 bushels.) That means there is considerable room for improvement before these seeds are maxed out. These "top producers" aren't using different seeds; instead, they're benefiting from better soils, using better farming practices, and applying lots of water, fertilizer, and other chemicals—factors that GM technology won't influence anyway.

To be fair, GM technologists may eventually master the complexity of yield—but not without spending lots of money and lots of time; Monsanto says it will need at least two decades for its big yield boosts. That means the world has little hope for quick relief—and that GM companies have little hope for a quick return on their investment. Thus, for all the hype about using GM to solve the current crisis, or to end hunger generally, the industry will be financially inclined to focus on simpler projects with faster payoffs, such as new varieties of commercial crops bred to tolerate herbicides and pesticides.

Even if GM companies do manage to improve crops that truly matter for food security, these miracle seeds won't help if they're not accessible to poor farmers. That means companies must either price seeds cheaply enough for farmers to buy each year or stop objecting when poor farmers save and reuse the seeds the following year. Today, Monsanto and other seed companies object strenuously to seed saving, which they call "seed piracy" and which they claim deprives them of profits. Yet seed saving is central to food security for the billions of farmers too poor to buy new seeds every season. More to the point, while pirated profits are a real issue among wealthy Western farmers, it's a bogus concern in the developing world, where poor farmers were never going to buy new seeds—and certainly not expensive GM seeds—every year anyway.

TODAY IN SLATE

The World

The Budget Disaster that Sabotaged the WHO’s Response to Ebola

Are the Attacks in Canada a Sign of ISIS on the Rise in the West?

PowerPoint Is the Worst, and Now It’s the Latest Way to Hack Into Your Computer

Everything You Should Know About Today’s Eclipse

Fascinating Maps Based on Reddit, Craigslist, and OkCupid Data

Education

Welcome to 13th Grade!

Some high schools are offering a fifth year. That’s a great idea.

Culturebox

The Actual World

“Mount Thoreau” and the naming of things in the wilderness.

Want Kids to Delay Sex? Let Planned Parenthood Teach Them Sex Ed.

Can Democratic Sen. Mary Landrieu Pull Off One More Louisiana Miracle?

  News & Politics
The World
Oct. 23 2014 1:51 PM Is This the ISIS Backlash We've Been Waiting For?
  Business
Moneybox
Oct. 23 2014 11:51 AM It Seems No One Is Rich or Happy: I Looked
  Life
Atlas Obscura
Oct. 23 2014 1:34 PM Leave Me Be Beneath a Tree: Trunyan Cemetery in Bali
  Double X
The XX Factor
Oct. 23 2014 11:33 AM Watch Little Princesses Curse for the Feminist Cause
  Slate Plus
Working
Oct. 23 2014 11:28 AM Slate’s Working Podcast: Episode 2 Transcript Read what David Plotz asked Dr. Meri Kolbrener about her workday.
  Arts
Culturebox
Oct. 23 2014 1:46 PM The Real Secret of Serial Has Sarah Koenig made up her mind yet? 
  Technology
Technology
Oct. 23 2014 11:45 AM The United States of Reddit  How social media is redrawing our borders. 
  Health & Science
Bad Astronomy
Oct. 23 2014 7:30 AM Our Solar System and Galaxy … Seen by an Astronaut
  Sports
Sports Nut
Oct. 20 2014 5:09 PM Keepaway, on Three. Ready—Break! On his record-breaking touchdown pass, Peyton Manning couldn’t even leave the celebration to chance.