Can you hear better?

The quest to build better people.
March 10 2003 2:46 PM

Hearing Aid

Is there a better ear?

Your ear
Your ear
David Plotz David Plotz

David Plotz is Slate's editor at large. He's the author of The Genius Factory and Good Book.

Just as research on blindness may lead to night-vision gene therapy or astonishing eye implants, so research on deafness may be the steppingstone to supernormal hearing.


For those who have forgotten their anatomy, here's a quick refresher on how the ear works. (If you haven't forgotten, skip this paragraph.) Sound arrives in the pinna. This is the visible part of the ear—the dried apricot on the side of the head. Sound waves travel the 1-inch length of the ear canal and stimulate the tympanic membrane ("eardrum"). The vibrations of the eardrum are passed on to the three bones of the middle ear, which amplify the sound and send it into the inner ear, a snail-shaped tube—the "cochlea"—filled with liquid. In the cochlea, the sound becomes a fluid wave, stimulating 7,000 "hair cells" that line the cochlear walls. The hair cells transform the wave into electrochemical signals. These signals fire the nerves that travel to the brain. (What frequency hair cells receive depends on where they are located in the cochlea.) The hair cells are the ear's star players, the organ's most delicate, precise, and important tools. The failure or destruction of hair cells is the leading cause of deafness.

The Mecha-Ear

The mechanics of listening
The mechanics of listening

The Background Implants hold the most promise for enhancing hearing. The best implants today are relatively rudimentary. "Cochlear implants" are surgically fitted into the cochlea of deaf people—usually children—whose hair cells don't work. The implants, which essentially replace the hair cells, receive an audio feed from a microphone outside the ear. A signal processor translates this feed into electrical pulses that fire the nerves attached to the cochlea. The brain interprets the nerve transmissions as sound. Today's best implants can divide the signal into 21 "channels." By contrast, each of the 7,000 hair cells in a functioning ear is, effectively, its own channel; so, cochlear implants deliver only a fraction of the aural information that the ear normally receives. With years of training, implantees learn to understand speech, but the House Ear Institute's Bob Shannon, the world authority on implants, says it would take about 100 channels to make that speech sound normal. Miniaturization and better technology will certainly allow that to happen.

The Project
What if we use the implant technology on undamaged ears? People with normal hearing could wear implants—or in a much less intrusive procedure, removable amplifiers in the middle ear—that would receive signals from microphones outside the ear.

There's no limit to what microphones could feed into the ear. Wearing a directional microphone would enable you to eavesdrop on conversations across a room or behind you. There are also microphones that enhance the "cocktail party effect"—the phenomenon that allows you to tune out loud chatter in order to hear the person talking to you. Such a mike would amplify a conversation right next to you but wash out all the other ambient noise. Using a combination of mikes would permit you to eavesdrop at a distance and then focus in on up-close chatter, with the flick of a switch.

At the distant end of this road lies the development of human sonar. Dolphins and bats are echolocators: They emit ultra-high-frequency sounds and use the echoes to determine the location of objects. Theoretically, speculates University of Wisconsin psychology professor Fred Wightman, we could make echolocating implants for ourselves. We would wear a machine that emitted ultra-high-frequency pings, then strap on microphones programmed to hear the ultra-high-frequency echoes. Those signals would be delivered to the implant, translated into sound, and fed to the brain. With enough training—you'd probably start from infancy—children might be able to make sense of the signals: They could have their own form of sonar, useful for night travel.

The Obstacles
It takes young children years to understand speech from a cochlear implant. Making sense of something as baroque as echolocation could be impossible.

Why Bother?
The benefits of echolocation are so obscure that I can't imagine anyone would want it. As for less exotic implants: The operation to install today's cochlear implants destroys all residual hearing. Few people with normal hearing would choose such alarming surgery for such a marginal benefit. Fortunately, there's a less intrusive, temporary way to perform the same tricks: Do what spies already do, and wear a removable earpiece fed by a directional mike.

The Timeline
Cochlear implants improve every year, as do microphones. There are already hearing aids that allow wearers to choose long-distance or short-distance listening. In a decade, there will be implants that allow different kinds of directional listening. As for sonar or something like it: It will be decades, assuming anyone is interested.


Frame Game

Hard Knocks

I was hit by a teacher in an East Texas public school. It taught me nothing.

Republicans Like Scott Walker Are Building Campaigns Around Problems That Don’t Exist

Why Greenland’s “Dark Snow” Should Worry You

If You’re Outraged by the NFL, Follow This Satirical Blowhard on Twitter

The Best Way to Organize Your Fridge

The World

Iran and the U.S. Are Allies

They’re just not ready to admit it yet.

Sports Nut

Giving Up on Goodell

How the NFL lost the trust of its most loyal reporters.

Chief Justice John Roberts Says $1,000 Can’t Buy Influence in Congress. Looks Like He’s Wrong.

Farewell! Emily Bazelon on What She Will Miss About Slate.

  News & Politics
Sept. 16 2014 4:08 PM More Than Scottish Pride Scotland’s referendum isn’t about nationalism. It’s about a system that failed, and a new generation looking to take a chance on itself. 
Sept. 16 2014 4:16 PM The iPhone 6 Marks a Fresh Chance for Wireless Carriers to Kill Your Unlimited Data
The Eye
Sept. 16 2014 12:20 PM These Outdoor Cat Shelters Have More Style Than the Average Home
  Double X
The XX Factor
Sept. 15 2014 3:31 PM My Year As an Abortion Doula
  Slate Plus
Slate Plus Video
Sept. 16 2014 2:06 PM A Farewell From Emily Bazelon The former senior editor talks about her very first Slate pitch and says goodbye to the magazine.
Brow Beat
Sept. 16 2014 1:27 PM The Veronica Mars Spinoff Is Just Amusing Enough to Keep Me Watching
Future Tense
Sept. 16 2014 1:48 PM Why We Need a Federal Robotics Commission
  Health & Science
Sept. 16 2014 4:09 PM It’s All Connected What links creativity, conspiracy theories, and delusions? A phenomenon called apophenia.
Sports Nut
Sept. 15 2014 9:05 PM Giving Up on Goodell How the NFL lost the trust of its most loyal reporters.