Fusion Energy’s Dreamers, Hucksters, and Loons
Bottling up the power of the sun will always be 20 years away.
It takes a truly international effort to create something as powerfully screwed up as ITER. Yet if your only source of information were the ITER project's own history, you'd have no clue just how rocky the project has been behind the scenes. There's no mention of the nasty battles over cost overruns in the late 1980s and early 1990s. There isn't any hint of how scientists working on domestic fusion projects—whose budgets were getting eaten by ITER—worked behind the scenes to scuttle the international project. (And they succeeded: In 1998, the United States pulled out of the project, sending the whole endeavor back to the drawing board.) There's no sign of the dramatic scaling down of the machine's design (ITER had become ITER-Lite). Nor is there any acknowledgement that the new, cheaper, machine would simply be unable to achieve ITER's original goal of "ignition and sustained burn"—a fusion reaction that can be kept going indefinitely.
In the aftermath of the U.S. pullout, the remaining partners regrouped, settled on the cheap design and a bare-bones budget. The United States then rejoined, and construction crews even broke ground in France for the reactor site. ITER is currently under construction in France. But despite these hopeful developments, the reborn project is foundering—dragged down by the very same forces that doomed the original ITER. The bare-bones budget (supposedly around $5 billion when the United States rejoined the project) has swollen back up to Falstaffian proportions (the latest estimate is $20 billion), and each year, the estimated completion date just keeps getting pushed further and further into the future. (A quick look into the Internet wayback machine shows the dates in flux.)
The present trajectory of the reborn ITER looks incredibly familiar to anyone who watched the original project go down in flames. First comes ballooning costs and schedule slippage, and then, like clockwork, the United States begins to have difficulty coming up with the money it promised. Back in 2008, U.S. officials started telling Congress that, given tight budgets, we were likely not going to be able to shoulder our agreed-upon share of the ITER project costs. In an attempt to come up with the money, the Department of Energy has been squeezing our domestic fusion program, but there simply isn't enough cash to go around. (As Sen. Dianne Feinstein asked Secretary of Energy Steven Chu in March, "And if we continue to fund [ITER], where would the $300 million [for our soon-to-be annual ITER contribution] come from?" Secretary Chu's answer: "Senator, you're asking a very important question we've asked ourselves.") Naturally, domestic fusion scientists whose budgets are being slashed are freaking out.
Viewed against this backdrop, the recent announcement by Princeton Plasma Physics Laboratory that it's working with South Korea to design a fusion reactor—one that doesn't have a snowball's chance in hell of ever being built—demonstrates the chaos that's gripped the fusion community. The scientists at PPPL are promising a billion-watt demonstration fusion power plant in the 2030s (20 years away!), without using any data from ITER. Since the whole point of ITER is to assist in the design of a demonstration fusion power plant, the implication seems to be that the $20-billion project is pretty much superfluous. (Without any sense of cognitive dissonance, even ITER's website suggests that scientists will complete the design of a demonstration power plant in 2017, two years before ITER gets plugged in, at the same time they emphasize how crucial ITER is to the prospect of a future fusion power plant.)
Given this history, it's easy to understand why fanatical devotees gravitate to unorthodox approaches to fusion energy, be they cold-fusion moonbattery or schemes touted by startup companies with more cash than brains. The mainstream scientists who've been pursuing the dream have left us with little more than a thicket of delusions and broken promises. And, if one is to believe them now, after six decades of work, the clean, nearly limitless power of fusion is still 20 years away. At this rate, it will always be.
Charles Seife is a journalism professor at New York University. His most recent books are Sun in a Bottle: The Strange History of Fusion and the Science of Wishful Thinking and Proofiness: The Dark Arts of Mathematical Deception.




Dr. Oz’s Miracle Diet Advice Is Malarkey
See Every Pop Culture Reference Made in a Tarantino Movie in 5 Minutes
The NRA Claims the AR-15 Is Useful for Hunting and Home Defense. Not Exactly.