An Ice-Bound Observatory in Antarctica May Have Detected Neutrinos From Deep Space

Stories from New Scientist.
Jan. 18 2014 7:15 AM

Neutrino Time

The quirky particles come from some of the most violent phenomena in the universe.

A scientist enjoys the winter cold and darkness outside the Ice Cube Laboratory at Amundsen-Scott South Pole Station, on August 17, 2012.
A scientist enjoys the winter cold and darkness outside the Ice Cube Laboratory at Amundsen-Scott South Pole Station, in 2012.

Photo courtesy Sven Lidstrom/National Science Foundation

Ray Jayawardhana is professor of astrophysics at the University of Toronto, Canada, and author of The Neutrino Hunters.

Jon White: What's so interesting about neutrinos?
Ray Jayawardhana: They are elementary particles with rather quirky properties. They hardly ever interact with matter, and that makes them really difficult to pin down. Trillions pass through your body every second but there's only maybe a 25 percent chance that one will interact with an atom in your body in your whole lifetime.

JW: Where do they come from?
RJ: Some come from the heart of the sun; others are produced in the upper atmosphere when cosmic rays hit atoms. Then there are geoneutrinos that are produced in the Earth's interior as radioactive elements decay. The vast majority of neutrinos that pass through Earth are from those three sources. But there's a great deal of interest in detecting neutrinos that come from much farther away—cosmic neutrinos.

Advertisement

JW: Why are cosmic neutrinos such a big deal?
RJ: Some of the more violent phenomena in the universe produce neutrinos. So there are some really fundamental questions that cosmic neutrinos allow us to probe. So far, though, only two batches have been detected. The first were from the supernova 1987A, a star that exploded in a satellite galaxy of the Milky Way. More recently, the IceCube neutrino observatory in Antarctica reported some 28 energetic neutrinos that are almost certainly cosmic in origin.

South Pole employees remove snow from the top of buildings during the winter darkness, on May 9, 2012.
South Pole employees remove snow from the top of buildings during the winter darkness, in 2012.

Photo courtesy Sven Lidstrom/National Science Foundation

JW: How significant was the IceCube detection?
RJ: It marks the beginnings of neutrino astronomy. Astronomy is not like other sciences; we usually don't get to put our quarry under the microscope or analyze it in the lab. We have to depend on feeble light from distant sources. By now, we've fairly well explored the electromagnetic spectrum. There are only two other potential cosmic messengers that we know of. One is gravitational waves, which still have not been detected directly. The other is cosmic neutrinos.

JW: Do the IceCube scientists know the precise origins of the neutrinos they saw?
RJ: Not yet. But the two candidate sources are the supermassive black holes at the hearts of galaxies and gamma-ray bursts, which are most likely produced by the deaths of incredibly massive stars.

JW: What else could cosmic neutrinos reveal?
RJ: There should have been neutrinos produced seconds after the big bang. With existing astronomy we can only look back to about 380,000 years after the big bang. If we could detect these "relic" neutrinos, we could look back to within seconds of the birth of the universe. The problem is that they are now low in energy, and therefore extremely difficult to detect. Present detectors are nowhere close to being sensitive enough to see them.

JW: Can neutrinos capture the public imagination in the same way as the Higgs boson?
RJ: The Higgs has been a terrific story. But neutrinos allow us to probe some really profound questions and I think that makes them truly interesting. They're ready to take center stage.

This article originally appeared in New Scientist.

The IceCube lab, illuminated by moonlight.
The IceCube lab, illuminated by moonlight.

Photo by Emanuel Jacobi/National Science Foundation

TODAY IN SLATE

Politics

Meet the New Bosses

How the Republicans would run the Senate.

The Government Is Giving Millions of Dollars in Electric-Car Subsidies to the Wrong Drivers

Scotland Is Just the Beginning. Expect More Political Earthquakes in Europe.

Cheez-Its. Ritz. Triscuits.

Why all cracker names sound alike.

Friends Was the Last Purely Pleasurable Sitcom

The Eye

This Whimsical Driverless Car Imagines Transportation in 2059

Medical Examiner

Did America Get Fat by Drinking Diet Soda?  

A high-profile study points the finger at artificial sweeteners.

The Afghan Town With a Legitimately Good Tourism Pitch

A Futurama Writer on How the Vietnam War Shaped the Series

  News & Politics
Photography
Sept. 21 2014 11:34 PM People’s Climate March in Photos Hundreds of thousands of marchers took to the streets of NYC in the largest climate rally in history.
  Business
Business Insider
Sept. 20 2014 6:30 AM The Man Making Bill Gates Richer
  Life
Quora
Sept. 20 2014 7:27 AM How Do Plants Grow Aboard the International Space Station?
  Double X
The XX Factor
Sept. 19 2014 4:58 PM Steubenville Gets the Lifetime Treatment (And a Cheerleader Erupts Into Flames)
  Slate Plus
Tv Club
Sept. 21 2014 1:15 PM The Slate Doctor Who Podcast: Episode 5  A spoiler-filled discussion of "Time Heist."
  Arts
Television
Sept. 21 2014 9:00 PM Attractive People Being Funny While Doing Amusing and Sometimes Romantic Things Don’t dismiss it. Friends was a truly great show.
  Technology
Future Tense
Sept. 21 2014 11:38 PM “Welcome to the War of Tomorrow” How Futurama’s writers depicted asymmetrical warfare.
  Health & Science
The Good Word
Sept. 21 2014 11:44 PM Does This Name Make Me Sound High-Fat? Why it just seems so right to call a cracker “Cheez-It.”
  Sports
Sports Nut
Sept. 18 2014 11:42 AM Grandmaster Clash One of the most amazing feats in chess history just happened, and no one noticed.