Could genetically modified crops be good for the environment?

Could genetically modified crops be good for the environment?

News and commentary about environmental issues.
Jan. 28 2009 6:58 AM

The Green Monster

Could Frankenfoods be good for the environment?


I'm sitting at my desk examining a $10.95 jar of South River Miso. The stuff is delicious, marked by a light, lemony tang. The packaging, by contrast, is a heavy-handed assurance of purity. The company is eager to tell me that the product I've purchased is certified organic, aged for three weeks in wood (sustainably harvested?), unpasteurized, made with "deep well water," handcrafted, and—the designation that most piques my interest— GMO free.

GMO refers to "genetically modified organisms." A genetically modified crop results from the laboratory insertion of a gene from one organism into the DNA sequence of another in order to confer an advantageous trait such as insect resistance, drought tolerance, or herbicide resistance. Today almost 90 percent of soy crops and 80 percent of corn crops in the United States sprout from genetically engineered seeds. Forty-five million acres of land worldwide contain genetically engineered crops. From the perspective of commercial agriculture, the technology has been seamlessly assimilated into traditional farming routines.


From the perspective of my miso jar, however, it's evident that not all consumers share the enthusiasm. It's as likely as not that you know GMOs by their stock term of derision: Frankenfoods. The moniker reflects a broad spectrum of concerns: Some anti-biotech activists argue that these organisms will contaminate their wild cousins with GM pollen and drive native plants extinct. Others suggest that they will foster the growth of "superweeds"—plants that develop a resistance to the herbicides many GMOs are engineered to tolerate. And yet others fear that genetic alterations will trigger allergic reactions in unsuspecting consumers. Whether or not these concerns collectively warrant a ban on GMOs—as many (most?) environmentalists would like to see—is a hotly debated topic. The upshot to these potential pitfalls, however, is beyond dispute: A lot of people find this technology to be creepy.

Whatever the specific cause of discontent over GM crops, popular resistance came to a head in 2000, when the National Organic Program solicited public input on the issue of whether they should be included. In response, sustainable-food activists deluged officials with a rainforest's worth of letters—275,000, to be exact—beating the measure into oblivion. Today, in the same spirit, environmentalists instinctively deem GMOs the antithesis of environmental responsibility.

Many scientists, and even a few organic farmers, now believe the 2000 rejection was a fatal rush to judgment. Most recently, Pamela Ronald, a plant pathologist and chair of the Plant Genomics Program at the University of California-Davis, has declared herself one such critic. In Tomorrow's Table: Organic Farming, Genetics, and the Future of Food, she argues that we should, in fact, be actively merging genetic engineering and organic farming to achieve a sustainable future for food production. Her research—which she conducts alongside her husband, an organic farmer—explores genetically engineered crops that, instead of serving the rapacity of agribusiness, foster the fundamentals of sustainability. Their endeavor, counterintuitive as it seems, points to an emerging green biotech frontier—a hidden realm of opportunity to feed the world's impending 9 billion a diet produced in an environmentally responsible way.

To appreciate how "responsible genetic modification" isn't an oxymoron, consider grass-fed beef. Cows that eat grass are commonly touted as the sustainable alternative to feedlot beef, a resource-intensive form of production that stuffs cows with a steady diet of grain fortified with antibiotics, growth hormones, steroids, and appetite enhancers that eventually pass through the animals into the soil and water. One overlooked drawback to grass-fed beef, however, is the fact that grass-fed cows emit four times more methane—a greenhouse gas that's more than 20 times as powerful as carbon dioxide—as regular, feedlot cows. That's because grass contains lignin, a substance that triggers a cow's digestive system to secrete a methane-producing enzyme. An Australian biotech company called Gramina has recently produced a genetically modified grass with lower amounts of lignin. Lower amounts of lignin mean less methane, less methane means curbed global warming emissions, and curbed emissions means environmentalists can eat their beef without hanging up their green stripes.

  Slate Plus
May 22 2015 11:14 AM What Happened at Slate This Week? Assistant interactives editor Andrew Kahn on the best of Slate, from the history of slavery to Mad Men.