Could genetically modified crops be good for the environment?

Could genetically modified crops be good for the environment?

Could genetically modified crops be good for the environment?

News and commentary about environmental issues.
Jan. 28 2009 6:58 AM

The Green Monster

Could Frankenfoods be good for the environment?

(Continued from Page 1)

Another area where sustainable agriculture and genetic modification could productively overlap involves nitrogen fertilizer. A plant's failure to absorb all the nutrients from the fertilizer leads to the harmful accumulation of nitrogen in the soil. From there it leaches into rivers and oceans to precipitate dead zones so choked with algae that other marine life collapses. In light of this problem, Syngenta and other biotech companies are in the process of genetically engineering crops such as potatoes, rice, and wheat to improve their nitrogen uptake efficiency in an effort to diminish the negative consequences of nitrogen fertilization. Early results suggest that rice farmers in Southeast Asia and potato farmers in Africa might one day have the option of planting crops that mitigate the harmful effects of this long-vilified source of agricultural pollution.

Animals, of course, are just as modifiable as plants. Livestock farmers have been genetically tinkering with their beasts for centuries through the hit-or-miss process of selective breeding. They've done so to enhance their animals' health, increase their weight, and refine their fat content. Breeding animals to reduce environmental impact, however, hasn't been a viable option with the clunky techniques of conventional breeding. But such is not the case with genetic engineering.


Case in point: Canadian scientists have recently pioneered the "enviropig," a genetically modified porker altered to diminish the notoriously high phosphorous level of pig manure by 60 percent. Like nitrogen, phosphorous runoff is a serious pollutant with widespread downstream consequences. But with the relatively basic insertion of a gene (from E. coli bacteria) that produces a digestive enzyme called phytase, scientists have provided farmers with yet another tool for lessening their heavy impact on the environment.

When commercial farmers hear about GM grass, increased nitrogen uptake, and cleaner pigs, they're excited. And when they hear about other products in the works—genetically modified sugar beets that require less water and have higher yields than cane sugar; a dust made from genetically modified ferns to remove heavy metals from the soil; genetically modified and edible cotton seeds that require minimal pesticide use—they're also excited. And they're excited not only because these products have the potential to streamline production, but also because GM technology allows them to play a meaningful role in reducing their carbon footprint.

However, with the exception of the modified sugar beets, the GMOs mentioned in this article are not currently on the market. The cutting-room floors of research laboratories all over the world, in fact, are littered with successful examples of genetically engineered products that have enormous potential to further the goals of sustainable agriculture. Demand for these products remains high among farmers—it almost always does—but food producers fear the bad publicity that might come from anti-GMO invective.

Given the potential of these products to reduce the environmental impact of farming, it's ironic that traditional advocates for sustainable agriculture have led a successful campaign to blacklist GMOs irrespective of their applications. At the very least, they might treat them as legitimate ethical and scientific matters deserving of a fair public hearing. Such a hearing, I would venture, would not only please farmers who were truly concerned about sustainability, but it would provide the rest of us—those of us who do not grow food for the world but only think about it—a more accurate source of scientific information than the back of a miso jar.