Science education in America: Why K-12 students fall behind in science.

“How Does a Plant Make Their Food? Do They Use a Microwave?”

“How Does a Plant Make Their Food? Do They Use a Microwave?”

Getting schooled.
Nov. 24 2013 11:45 PM

“Tell Your Second-Grade Teacher I’m Sorry”

The failure of science education in the United States.

Solar Greenhouse,

This essay originally appeared in the November/December 2013 issue of Orion and also appears in the anthology Leave No Child Inside. Request a free trial issue of Orion here.

One of the most remarkable scenes in Rebecca Skloot’s 2010 work of science journalism, The Immortal Life of Henrietta Lacks, happens about halfway through the book, in a smoky Baltimore kitchen. Skloot has been pursuing the reluctant Lacks family for about a year and has finally managed an introduction to Lawrence Lacks, the oldest son of Henrietta and Day Lacks. He cooks eggs and pork chops for Skloot and begins reminiscing about his mother, a strict, pretty woman who died of cervical cancer when he was a young teenager, but soon admits that, at 64, he barely remembers her at all. Instead of memories, photographs, and family anecdotes, he and his siblings have only the ominous stories of her stolen cells: that there are enough of them now to “cover the whole earth,” that they have cured diseases, that they will soon make it possible for humans to live to be 800 years old.

After ushering Skloot into the living room with her plate of food, Lawrence asks her to tell him what his mother’s cells (now known in biomedical research as the “HeLa immortal cell line”) “really did,” and Skloot asks him if he knows what a cell is. “Kinda,” he tells her. “Not really.” Skloot writes:


I tore a piece of paper from my notebook, drew a big circle with a small black dot inside, and explained what a cell was, then told him some of the things HeLa had done for science, and how far cell culture had come since.

Although their mother’s cells—taken without her knowledge during her cancer treatment in 1951—have indeed helped cure diseases and have made millions of dollars for biomedical supply companies, pharmaceutical companies, and research laboratories, the surviving members of the Lacks family still live in poverty, without reliable access to health insurance or proper medical care. Perhaps more significantly, they lack even the basic scientific information that would allow them to understand Henrietta’s legacy or make informed decisions about their own health. At Lawrence’s house, Skloot meets 84-year-old Day Lacks, Henrietta’s husband, who wears flip-flops in cold weather because he has gangrene in his feet; after his wife’s death and the re-emergence of her mysterious cells, he is afraid to let doctors treat him. Sonny, one of Henrietta’s other sons, refuses angioplasty for the same reason.

Skloot’s simple diagram, along with an article she shows him about a method of corneal transplantation developed through the study of his mother’s cells, has a profound effect on Lawrence. He is energized by the idea that his mother’s cells could help cure blindness, and he convinces other members of his family, including his father, his wife, and his sister, to talk to Skloot.

How is it possible that no one has ever told him how a cell works before? You could speculate that because Lawrence was educated during the time of Jim Crow segregation, he received poor instruction or that the economic and emotional pressure on his family after the death of Henrietta affected his educational attainment. You could consider the partial deafness, untreated until adulthood, that made it hard for Lawrence and his siblings to understand teachers, or the time Lawrence spent out of school, doing field labor. You could point to his environment, a low-income neighborhood in a poor city, where rumors of body snatching and unauthorized medical experimentation on African-Americans engendered suspicion of doctors and scientists. Certainly all of these details contributed to Lawrence’s abashed admission that he did not know what a cell was or how it functioned.

But it is also true that the public school system of the United States, the richest country in the world, still struggles to educate our citizens about science and to make that education relevant and present in their daily lives. How well we understand science affects almost every aspect of our personal and civic lives: our health, our reproductive choices, our understanding of the news, how and whether we vote, and our interaction with the environment. Many of the most important and contentious political issues of our time—climate change, hydraulic fracturing, offshore drilling—are also environmental and require an understanding of basic scientific principles that many of our poorest citizens lack. These same citizens will suffer from their lack of understanding: from water quality damaged by fracking, from mountaintop removal, from flooding caused by rising water levels. Poor people are disproportionately susceptible to poor health and more likely to be exposed to environmental or household pollutants. But for many of our poorest citizens, science education is largely ignored, especially in the foundational elementary and middle school years, as we favor the “basics” of reading and math through a testing and school accountability system that does not prepare our students for the significant social and environmental challenges to come.

* * *


I was a K–12 educator for 10 years, working in rural and urban public elementary, middle, and high schools in California; New York; Washington, D.C.; and North Carolina. No Child Left Behind, signed into law by George W. Bush in 2002, was my constant professional companion, rating the schools where I taught as adequate or inadequate and allocating resources accordingly. This frequently maligned law identified the subjects I taught—English, reading, and writing—as among the most crucial (along with math), and I received additional support so that my students could be successful on the standardized tests that determined my schools’ yearly progress. My students received additional tutoring, materials, and time in class, and I was given pedagogical training and assistance from my principals with managing tough classes. Meanwhile, I observed science teachers and classrooms, particularly at the elementary and middle schools, receiving fewer materials and resources, and even less institutional support.

At the elementary school in Brooklyn where I taught first grade, science was a “special,” along with dance, art, and physical education. That meant that students were delivered by their homeroom teachers to the science teacher between one and three times a week for less than an hour each time. I remember that the science teacher, a patient but weary man from Jamaica, had little in the room to engage my 6-year-olds beyond laminated charts and posters on the wall: no microscopes, no plants, no homemade solar system models or fungus-crowded petri dishes. No fish tanks or worm bins or leaf specimens. Our principal liked a tidy classroom, and the science teacher’s was spotless. She also liked a quiet classroom, and although the kids never seemed especially rowdy to me, he bemoaned their fidgety lack of discipline: In Jamaica, he once told me, it was common for one teacher to control a class of 40 or 45 students.

What did they do in there? Worksheets, mostly, filled with labeled drawings, diagrams, and charts they could not read. Sometimes he performed an experiment, and they watched. Perhaps the best behaved were invited up to help him; most of them never left their seats.

At the time, it did not occur to me to be outraged, or to feel responsible for making up for their lost opportunities. My school was a Title I school; so many of my students qualified for free breakfast and lunch that everyone ate free, and the school day was long and often difficult. I was new to the classroom, my teaching philosophy strongly influenced by Earl Shorris’ Clemente Course in the Humanities, a program developed in the 1990s to provide university-level instruction in philosophy, art, logic, and poetry to poor adults in American cities. My students, poor children from Bedford-Stuyvesant, would achieve agency and power in their own, first-grade way: we’d read poetry, study Pablo Picasso and Jacob Lawrence, listen to jazz, write folk tales about our neighborhood.

Sometimes we planted seeds and bulbs in paper cups and left them to sprout on the windowsill, but mostly I didn’t worry about science. I was teaching them to read; I was working on their cultural literacy.

But science is cultural literacy, a fact that became apparent when a friend teaching in the same school told me about getting her fifth-graders ready for their statewide science test. Preparation was hurried, last-minute, cursory: Their scores would not be held against our Adequate Yearly Progress, after all. My friend, however, did not want her students to feel blindsided by the test, so she had photocopied some handouts and sample questions. “I was trying to explain photosynthesis,” she said, “and one of my kids asked me, ‘How does a plant make their food? Do they use a microwave?’ What do you say to that?”

The uncertain student had spent little of his elementary school time outside, had not taken field trips to any science museums. He had not gardened or designed experiments about sunlight and plant growth or even diagrammed a leaf. He had never looked at a plant cell under a microscope. His frame of reference for the world, and his relationship to it, was severely limited, but teachers and school administrators had worried instead about how well he could read and multiply.

I was reminded of something another friend, teaching first grade nearby, said she told one of her former students, a girl who’d ended the year woefully unprepared for the next year: “Tell your second-grade teacher I’m sorry.”