Employment rates for STEM Ph.D.s: It’s a stagnant job market for young scientists.

The Stagnating Job Market for Young Scientists

The Stagnating Job Market for Young Scientists

Commentary about business and finance.
July 10 2014 3:24 PM

The Stagnating Job Market for Young Scientists

Employment rates for STEM Ph.D.s are down or stagnant across the board.

The overall demand for new Ph.D.s in the fields of science, technology, engineering, and math is stagnant.

Photo by Shutterstock

Young scientists spend most of their work lives gathering and crunching data. So it seems especially unfair that when it comes to the job hunt, they’re forced to fly mostly blind. Ph.D. programs don’t usually track their graduates’ employment outcomes. They certainly don’t advertise placement figures the way that, say, business schools do. While the government collects troves of information from America’s doctorate holders every year, much of it is weirdly organized and tricky to access.

Jordan Weissmann Jordan Weissmann

Jordan Weissmann is Slate’s senior business and economics correspondent.

With a little cleaning up, however, the federal data do tell a pretty clear story: The market for new Ph.D.s in the much obsessed-about STEM fields—science, technology, engineering, and math—is stagnant. Over the last 20 years, employment rates are either flat or down in each major discipline, from computer science to chemistry. It’s not what you’d expect given the way companies like Microsoft talk about talent shortages.

But the graphs don’t lie. Building on a short post I wrote last year for the Atlantic, I asked the National Science Foundation to pull up two decades’ worth of results from its annual Survey of Earned Doctorates, which polls graduating Ph.D.s about their job plans. The numbers, which I’ve broken down in charts, cover the classes of 1992 through 2012 for chemistry, computer science, engineering, life sciences, math, and physics. They tell us the percentages of new Ph.D. recipients who:

  • Have a definite job commitment from an employer, whether in industry or in academia;
  • Have a definite commitment for a postdoctoral research appointment;
  • Are negotiating with at least one organization;
  • Are still job hunting (meaning unemployed); or
  • Who have other plans, such as pursuing yet another degree.

But before we start looking at charts, a bit of context.

You can spend dozens and dozens of pages discussing the employment prospects for each of these individual fields (and trust me, people have). And it’s important to remember that these numbers only represent a snapshot of Ph.D.s during their graduation year; in time, the vast majority of grads find some kind of work or research appointment. Unemployment among doctorate holders, even young ones, is extremely low, usually around 2 percent. But it’s worth examining these trends, because they can tell us more about the overall direction of the labor market.

First, we know what an actual boom looks like in these fields, thanks to the way employment rates spiked during the glory days of the late 1990s. We are very, very far from that peak. Second, in almost every discipline, the number of postdocs (or young Ph.D. holders working under the tutelage of an established scientist) has either been rising or stayed incredibly high, which is not an especially positive sign for the job market. Postdoc appointments are temporary, usually lasting a couple of years. Some involve independent research and ideally give young scientists a chance to publish articles that will help them land a tenure-track job; some are little more than lab assistant positions. But the pay, as shown in this graph from the NSF, is almost always low, especially for somebody who just spent six years or more earning a degree. Considering that it’s not uncommon in some fields to spend four years or more stringing postdocs together, this period of additional training means that many Ph.D.s will be well into their 30s before they have a permanent job with a salary that reflects their education.


Courtesy of the National Science Foundation

With that, let’s have some more pictures! (For the deeply interested: You can click on the graphs below to download their data.) First up, we’ll look at the life sciences. By far the largest category—it encompasses biomedical and health sciences, along with agriculture and natural resources—it’s also treated as the poster child for economic dysfunction in the scientific community.

Note the red line hovering above 40 percent employment: Those are the postdocs. Meanwhile, even through the late-’90s boom and late-’00s bust, employment rates (in blue) have remained generally mediocre. Particularly telling is the “other” line in teal: A rising share of these students may be looking for degrees in other fields.

Life Sciences. Click to download supporting data spreadsheet.

Chart by Jordan Weissmann

The near-term picture for chemists isn’t a whole lot rosier. Again, postdocs are hovering above 40 percent. Employment, after popping in the ’90s, fell to a plateau around 25 percent in the ’00s.

Chemistry. Click to download supporting data spreadsheet.

Chart by Jordan Weissmann

Physics has seen a slightly different pattern. Employment leaped in the dot-com era, then plummeted. But current graduates may be in a better position than they would have been in the early 1990s, since postdoc status seems to have replaced unemployment. High levels of postdocs aren’t ideal, but they’re far better than nothing.

Physics. Click to download supporting data spreadsheet.

Chart by Jordan Weissmann