Tim Harford's Adapt: What the RAF's World War II Spitfire can teach us about nurturing innovation and radical ideas.

Tim Harford's Adapt: What the RAF's World War II Spitfire can teach us about nurturing innovation and radical ideas.

Tim Harford's Adapt: What the RAF's World War II Spitfire can teach us about nurturing innovation and radical ideas.

Commentary about business and finance.
May 16 2011 6:50 AM

The Airplane That Saved the World

What the RAF's World War II Spitfire can teach us about nurturing innovation and radical ideas.

(Continued from Page 1)

The Spitfire is one of countless examples of these unlikely ideas, which range from the sublime (the mathematician and gambler Gerolamo Cardano first explored the idea of "imaginary numbers" in 1545; these apparently useless curiosities later turned out to be essential for developing radio, television, and computing) to the ridiculous (in 1928, Alexander Fleming didn't keep his laboratory clean and ended up discovering the world's first antibiotic in a contaminated Petri dish).

We might be tempted to think of such projects as lottery tickets, because they pay off rarely and spectacularly. They're rather better than that, in fact. Lotteries are a zero-sum game—all they do is redistribute existing resources, whereas research and development can make everyone better off. And unlike lottery tickets, bold innovation projects do not have a known payoff and a fixed probability of victory. Nassim Taleb, author of The Black Swan, calls such projects "positive black swans."

Whatever we call them, such ventures present us with a headache. They are vital, because the payoff can be so enormous. But they are also frustrating and unpredictable. Usually they do not pay off at all. We cannot ignore them, and yet we cannot seem to manage them effectively either.


It would be reassuring to think of new technology as something we can plan. And sometimes, it's true, we can: the Manhattan Project did successfully build the atomic bomb; John F. Kennedy promised to put a man on the Moon inside a decade, and his promise was kept. But these examples are memorable in part because they are unusual. It is comforting to hear a research scientist, corporation, or government technocrat tell us that our energy problems will soon be solved by some specific new technology: a new generation of hydrogen-powered cars, maybe, or biofuels from algae, or cheap solar panels made from new plastics. But the idea that we can actually predict which technologies will flourish flies in the face of all the evidence. The truth is far messier and more difficult to manage.

That is why the story of how the Spitfire was developed against the odds offers a lesson for those of us who hope technology will solve the problems of today. It was developed in an atmosphere of almost total uncertainty about what the future of flying might be. In the previous war with Germany, which ran from 1914 to 1918, airplanes were a brand-new technology and were used mainly for scouting missions. Nobody really knew how they could most effectively be used as they matured. In the mid-1920s, it was widely believed that no airplane could exceed 260 miles per hour, but the Spitfire dived at over 450 mph. So it is hardly surprising that British air doctrine failed for such a long time to appreciate the potential importance of fighter planes. The idea of building fighters that could intercept bombers seemed a fantasy to most planners.

The Spitfire seemed especially fantastical as it fired directly forward, meaning that in order to aim at a target, the entire plane needed to change course. A design that struck many as much more plausible was a twin-seater plane with a gunner in a turret. Here are the words of one thoughtful and influential observer in 1938, one year before Germany and Britain went to war:

We should now build, as quickly and in as large numbers as we can, heavily armed aeroplanes designed with turrets for fighting on the beam and in parallel courses ... the Germans know we have banked upon the forward-shooting plunging 'Spitfire' whose attack ... if not instantly effective, exposes the pursuer to destruction.

The name of this Spitfire skeptic was the future Prime Minister, Winston Churchill. The plane he demanded was built all right, but few British schoolboys thrill to the legend of the Boulton-Paul Defiant. No wonder: the Defiant was a sitting duck.

It is easy to say with hindsight that official doctrine was completely wrong. But it would also be easy to draw the wrong lesson from that. Could ministers and air marshals really have predicted the evolution of aerial combat? Surely not. The lesson of the Spitfire is not that the Air Ministry nearly lost the war with their misconceived strategy. It is that, given that misconceptions in their strategy were all but inevitable, they somehow managed to commission the Spitfire anyway.

The lesson is variation, achieved through a pluralistic approach to encouraging new innovations. Instead of putting all their eggs in what looked like the most promising basket—the long-range bomber—the Air Ministry had enough leeway in its procedures that individuals like Air Commodore Cave-Browne-Cave could fund safe havens for "most interesting" approaches that seemed less promising, just in case—even approaches, like the Spitfire, that were often regarded with derision or despair.


In September 1835, Charles Darwin was rowed ashore from The Beagle and stepped into the breakers of the Galapagos Islands. He soon discovered some remarkable examples of how safe havens provide space for new things to develop—examples that would later lead him toward his theory of evolution through natural selection. Darwin, a meticulous observer of the natural world, noted the different species of finch that inhabited the islands. Not a single one was found anywhere outside the Galapagos archipelago, which lies in the Pacific Ocean 600 miles west of Ecuador in South America. Even more intriguingly, each island boasted a different selection of finches, all of similar size and colour but with very different beaks—some with thin, probing bills to grab insects, others with large powerful bills to crack seeds, still others adapted to eat fruit. The famous giant tortoises, too, had different species for different islands, some with a high-lipped shell to allow browsing on cactuses, those on the larger, grassier islands with a more conventional high-domed shell. This caught Darwin so unawares that he mixed up his specimens and had to ask the island's vice-governor to unscramble them; Galapagos tortoises are like no other tortoise on earth, so it took Darwin a long time to figure out that there were several distinct species. When Darwin turned his attention to Galapagan plants, he discovered the same story yet again. Each island had its own ecosystem.

The Galapagos Islands were the birthplace of so many species because they were so isolated from the mainland and, to a lesser degree, from each other. "Speciation"—the divergence of one species into two separate populations—rarely happens without some form of physical isolation, otherwise the two diverging species will interbreed at an early stage, and converge again.

Innovations, too, often need a kind of isolation to realise their potential. It's not that isolation is conducive to having ideas in the first place: Gene mutations are no more likely to happen in the Galapagos than anywhere else, and as many people have observed, bright ideas emerge from the swirling mix of other ideas, not from isolated minds. Jane Jacobs, the great observer of urban life, looked for innovation in cities, not on Pacific islands. But once a new idea has appeared, it needs the breathing space to mature and develop so that it is not absorbed and crushed by the conventional wisdom.

This idea of allowing several ideas to develop in parallel runs counter to our instincts: We naturally tend to ask, "What is the best option?" and concentrate on that. But given that life is so unpredictable, what seemed initially like an inferior option may turn out to be exactly what we need. It's sensible in many areas of life to leave room for exploring parallel possibilities—if you want to make friends, join several social clubs, not just the one that appears most promising—but it is particularly true in the area of innovation, where a single good idea or new technology can be so valuable. In an uncertain world, we need more than just Plan A; and that means finding safe havens for Plans B, C, D, and beyond.

The Spitfire was a long way down the alphabet from Plan A, not least because the Galapagan isle from which it emerged was populated by some highly unlikely characters. There was Noel Pemberton Billing, a playboy politician most famous as a campaigner against lesbianism. Billing successfully provoked a sensational libel trial in 1918 by accusing the exotic dancer Maud Allan of spreading this "Cult of the Clitoris" and then used the trial to publicize his rather unconventional view that almost 50,000 "perverts" had successfully been blackmailed by German spies into undermining the British war effort.